Electronic Components Datasheet Search
  English  ▼

Delete All


Preview PDF Download HTML

AT29C512 Datasheet(PDF) 3 Page - ATMEL Corporation

Part No. AT29C512
Description  512K (64K x 8) 5-volt Only Flash Memory
Download  18 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ATMEL [ATMEL Corporation]
Direct Link  http://www.atmel.com
Logo ATMEL - ATMEL Corporation

AT29C512 Datasheet(HTML) 3 Page - ATMEL Corporation

  AT29C512 Datasheet HTML 1Page - ATMEL Corporation AT29C512 Datasheet HTML 2Page - ATMEL Corporation AT29C512 Datasheet HTML 3Page - ATMEL Corporation AT29C512 Datasheet HTML 4Page - ATMEL Corporation AT29C512 Datasheet HTML 5Page - ATMEL Corporation AT29C512 Datasheet HTML 6Page - ATMEL Corporation AT29C512 Datasheet HTML 7Page - ATMEL Corporation AT29C512 Datasheet HTML 8Page - ATMEL Corporation AT29C512 Datasheet HTML 9Page - ATMEL Corporation Next Button
Zoom Inzoom in Zoom Outzoom out
 3 / 18 page
background image
Block Diagram
Device Operation
The AT29C512 is accessed like an EPROM. When CE and OE are low and WE is high, the data
stored at the memory location determined by the address pins is asserted on the outputs. The
outputs are put in the high impedance state whenever CE or OE is high. This dual-line control
gives designers flexibility in preventing bus contention.
Byte Load
Byte loads are used to enter the 128 bytes of a sector to be programmed or the software codes
for data protection. A byte load is performed by applying a low pulse on the WE or CE input with
CE or WE low (respectively) and OE high. The address is latched on the falling edge of CE or
WE, whichever occurs last. The data is latched by the first rising edge of CE or WE.
The device is reprogrammed on a sector basis. If a byte of data within a sector is to be changed,
data for the entire sector must be loaded into the device. Any byte that is not loaded during the
programming of its sector will be indeterminate. Once the bytes of a sector are loaded into the
device, they are simultaneously programmed during the internal programming period. After the
first data byte has been loaded into the device, successive bytes are entered in the same man-
ner. Each new byte to be programmed must have its high-to-low transition on WE (or CE) within
150 µs of the low-to-high transition of WE (or CE) of the preceding byte. If a high-to-low transi-
tion is not detected within 150 µs of the last low-to-high transition, the load period will end and
the internal programming period will start. A7 to A15 specify the sector address. The sector
address must be valid during each high-to-low transition of WE (or CE). A0 to A6 specify the
byte address within the sector. The bytes may be loaded in any order; sequential loading is not
required. Once a programming operation has been initiated, and for the duration of t
WC, a read
operation will effectively be a polling operation.

Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 

Datasheet Download

Go To PDF Page

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn