Electronic Components Datasheet Search
  English  ▼

Delete All


Preview PDF Download HTML

BD42530EFJ-C Datasheet(PDF) 21 Page - Rohm

Part No. BD42530EFJ-C
Description  250 mA Output Voltage Tracker
Download  29 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ROHM [Rohm]
Direct Link  http://www.rohm.com
Logo ROHM - Rohm

BD42530EFJ-C Datasheet(HTML) 21 Page - Rohm

Back Button BD42530EFJ-C Datasheet HTML 17Page - Rohm BD42530EFJ-C Datasheet HTML 18Page - Rohm BD42530EFJ-C Datasheet HTML 19Page - Rohm BD42530EFJ-C Datasheet HTML 20Page - Rohm BD42530EFJ-C Datasheet HTML 21Page - Rohm BD42530EFJ-C Datasheet HTML 22Page - Rohm BD42530EFJ-C Datasheet HTML 23Page - Rohm BD42530EFJ-C Datasheet HTML 24Page - Rohm BD42530EFJ-C Datasheet HTML 25Page - Rohm Next Button
Zoom Inzoom in Zoom Outzoom out
 21 / 29 page
background image
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
20.Apr.2016 Rev.001
Operational Notes – continued
Regarding the Input Pin of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a
parasitic diode or transistor. For example (refer to figure below):
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be
Ceramic Capacitor
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with
temperature and the decrease in nominal capacitance due to DC bias and others.
13. Thermal Shutdown Circuit(TSD)
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be
within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls
below the TSD threshold, the circuits are automatically restored to normal operation.
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat
Over Current Protection Circuit (OCP)
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should
not be used in applications characterized by continuous operation or transitioning of the protection circuit.

Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29 

Datasheet Download

Go To PDF Page

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn