Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

UCC28C40 Datasheet(PDF) 6 Page - Texas Instruments

Click here to check the latest version.
Part No. UCC28C40
Description  BICMOS LOW POWER CURRENT MODE PWM CONTROLLER
Download  19 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  TI [Texas Instruments]
Homepage  http://www.ti.com
Logo 

UCC28C40 Datasheet(HTML) 6 Page - Texas Instruments

Zoom Inzoom in Zoom Outzoom out
 6 / 19 page
background image
UCC28C40, UCC28C41, UCC28C42, UCC28C43, UCC28C44, UCC28C45
UCC38C40, UCC38C41, UCC38C42, UCC38C43, UCC38C44, UCC38C45
SLUS458C − AUGUST 2001 − REVISED SEPTEMBER 2003
6
www.ti.com
APPLICATION INFORMATION
This device is a pin-for-pin replacement of the bipolar UC3842 family of controllers, the industry standard PWM
controller for single-ended converters. Familiarity with this controller family is assumed.
The UCC28C4x/UCC38C4x series is an enhanced replacement with pin-to-pin compatibility to the bipolar
UC284x/UC384x and UC284xA/UC384xA families. The new series offers improved performance when
compared to older bipolar devices and other competitive BiCMOS devices with similar functionality. Note that
these improvements discussed below generally consist of tighter specification limits that are a subset of the
older product ratings, maintaining drop-in capability. In new designs these improvements can be utilized to
reduce the component count or enhance circuit performance when compared to the previously available
devices.
advantages
This device increases the total circuit efficiency whether operating off-line or in dc input circuits. In off-line
applications the low start-up current of this device reduces steady state power dissipation in the startup resistor,
and the low operating current maximizes efficiency while running. The low running current also provides an
efficiency boost in battery operated supplies.
low voltage operation
Two members of the UCC38C4x family are intended for applications that require a lower start-up voltage than
the original family members. The UCC38C40 and UCC38C41 have a turn-on voltage of 7.0 V typical and exhibit
hysteresis of 0.4 V for a turn-off voltage of 6.6 V. This reduced start-up voltage enables use in systems with lower
voltages, such as 12-V battery systems which are nearly discharged.
high speed operation
The BiCMOS design allows operation at high frequencies that were not feasible in the predecessor bipolar
devices. First, the output stage has been redesigned to drive the external power switch in approximately half
the time of the earlier devices. Second, the internal oscillator is more robust with less variation as frequency
increases. In addition, the current sense to output delay has been reduced by a factor of three, to 45ns typical.
These features combine to provide a device capable of reliable high frequency operation.
The UCC38C4x family oscillator is true to the curves of the original bipolar devices at lower frequencies yet
extends the frequency programmability range to at least 1MHz. This allows the device to offer pin to pin
capability where required yet capable of extending the operational range to the higher frequencies typical of
latest applications. When the original UC3842 was released in 1984 most switching supplies operated between
20kHz and 100kHz. Today, the UCC38C4x can be used in designs cover a span roughly ten times higher than
those numbers.
start/run current improvements
The start−up current is only 60
µA typical, a significant reduction from the bipolar device’s ratings of 300uA
(UC384xA). For operation over the temperature range of −40 to 85
°C the UCC28C4x devices offer a maximum
startup current of 100
µA, an improvement over competitive BiCMOS devices. This allows the power supply
designer to further optimize the selection of the startup resistor value to provide a more efficient design. In
applications where low component cost overrides maximum efficiency the low run current of 2.3 mA, typical,
may allow the control device to run directly through the single resistor to (+) rail, rather than needing a bootstrap
winding on the power transformer, along with a rectifier. The start/run resistor for this case must also pass
enough current to allow driving the primary switching MOSFET, which may be a few milliamps in small devices.


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn