Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF HTML

TLC2652C-8DR Datasheet(PDF) 24 Page - Texas Instruments

Click here to check the latest version.
Part No. TLC2652C-8DR
Description  Advanced LinCMOSE PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
Download  39 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  TI1 [Texas Instruments]
Homepage  http://www.ti.com
Logo 

TLC2652C-8DR Datasheet(HTML) 24 Page - Texas Instruments

Zoom Inzoom in Zoom Outzoom out
 24 / 39 page
background image
TLC2652, TLC2652A, TLC2652Y
Advanced LinCMOS PRECISION CHOPPERSTABILIZED
OPERATIONAL AMPLIFIERS
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005
24
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
APPLICATION INFORMATION
theory of operation (continued)
During the amplifying phase, switch B is closed connecting the output of the nulling amplifier to a noninverting
input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also,
external capacitor CXB stores the nulling potential to allow the offset voltage of the main amplifier to remain
nulled during the next nulling phase.
This continuous chopping process allows offset voltage nulling during variations in time and temperature over
the common-mode input voltage range and power supply range. In addition, because the low-frequency signal
path is through both the null and main amplifiers, extremely high gain is achieved.
The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to
chopping and the capability of the circuit to reduce this noise while chopping. The use of the Advanced LinCMOS
process, with its low-noise analog MOS transistors and patent-pending input stage design, significantly reduces
the input noise voltage.
The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches. As
charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with increasing
chopping frequency. This problem has been significantly reduced in the TLC2652 by use of a patent-pending
compensation circuit and the Advanced LinCMOS process.
The TLC2652 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the
gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the
main amplifier. As a result, the high-frequency response of the system is the same as the frequency response
of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both
the nulling and amplifying phases.


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn