Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

99153X-99 Datasheet(PDF) 10 Page - Peregrine Semiconductor

Part # 99153X-99
Description  Hi-Rel 6A DC-DC Converter
Download  15 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  PSEMI [Peregrine Semiconductor]
Direct Link  http://www.psemi.com
Logo PSEMI - Peregrine Semiconductor

99153X-99 Datasheet(HTML) 10 Page - Peregrine Semiconductor

Back Button 99153X-99 Datasheet HTML 6Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 7Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 8Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 9Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 10Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 11Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 12Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 13Page - Peregrine Semiconductor 99153X-99 Datasheet HTML 14Page - Peregrine Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 15 page
background image
Page 10 of 15
©2012–2015 Peregrine Semiconductor Corp. All rights reserved.
Document No. DOC-50371-6 │ UltraCMOS® Power Management Solutions
Product Specification
PE99153 DIE
DESIGN GUIDE
Setting the Output Voltage
The PE99153 can be configured to output a DC voltage
from +1.0V to +3.6V. The user can set the output voltage
by selecting the external feedback resistors Rfb1 and Rfb2.
The feedback resistors divide down the output voltage to
be compared to a +1.000V reference voltage. The error
amplifier uses this comparison to determine the amount of
current to send to the load.
To set the output voltage, a resistor divider must selected
that will produce at +1.000V DC voltage at the EAINM pin
when VOUT has reached the target output voltage.
VOUT = (Rfb1 + Rfb2) / Rfb2 = 1 + Rfb1 / Rfb2, and
Rfb1 = Rfb2 * (VOUT – 1), +1V <VOUT ≤+3.6V
The PE99153 reference design uses a value of 10 kΩ for
Rfb2.
Example:
Desired VOUT = +2.5V
Rfb2 = 10 kΩ
Rfb1 = 10 kΩ * (+2.5V – 1) = 15 kΩ
* For a desired output voltage of 1V, Rfb1 can be replaced with a 0Ω resistor and
Rfb2 not installed. This is equivalent to directly connecting VOUT to EAINM.
Output Inductor Selection
The output Inductor serves as the main energy storage
element in a switching regulator. It is perhaps the most
critical component influencing the performance of the buck
regulator. It impacts many aspects of the power supply
system performance, including power supply bandwidth,
output voltage ripple and ripple spectrum, and switching,
conduction, and core losses. Additionally, specific aspects
of the buck regulator itself place requirements on the range
of allowable Inductor values. These aspects include the
internal current detector sensitivity, the slope compensation
ramp dynamic range, and the current limitations of the part.
The selection of the Inductor is also a function of the
specifics of the application including input voltage, output
voltage, load current range, switching frequency, PCB
area, efficiency targets, power supply bandwidth, and ripple
requirements, to name a few.
Many performance requirements and other component
selections place restrictions on the Inductor selection.
However, since the Inductor selection plays a central role
in the performance of the power supply, its selection needs
to be made early in the design process. Therefore, as a
starting point, the Inductor needs to be initially selected
based on a few rough calculations and selection can be
refined iteratively as more system requirements are
introduced.
The voltage across the Inductor is VL = L x IL / t, where IL
is defined to be the Inductor peak-to-peak current ripple. The
ripple current is the change in the Inductor current during
each switching cycle. For the PE99153, the lower limit of IL
is set by the current threshold comparator sensitivity, while
the upper limit of IL is set by the current mode compensation
dynamic range.
Given the output voltage, switching frequency, input
voltage and the minimum IL required by the part, the
Inductance can be calculated as:
L = VL × t / IL
L = VOUT / (FSW × IL) × (1 – D), where
Duty cycle = D = VOUT / VIN
Switching frequency = FSW
Duration of Inductor voltage = t = D / FSW
As the output switches pull the OUT pin alternately to VIN
and to GND, the inductor peak to peak current ripple
(triangular current waveform magnitude) is expressed as:
IL = VOUT / (L × FSW) * (1 – D)
Example:
VIN = +5.0V
VOUT = +2.5V
FSW = 1 MHz
IL = 0.5A
L = VOUT / (FSW × IL) × (1 – D)
L = (+2.5 / (1 MHz × 0.5) * [(1 – (+2.5 / +5.0))] = 2.5 µH
The Inductor self resonant frequency (SRF) should be
selected to be at least 10x higher than the switching
frequency FSW. Meeting this requirement will ensure
stability, reduce output ripple and improve efficiency.
Vout
Rfb1
Error Amp
Rfb2
+
_
1.000V
EAINM
EAINP
VREF
Figure 6. Output Voltage Selection


Similar Part No. - 99153X-99

ManufacturerPart #DatasheetDescription
logo
Molex Electronics Ltd.
991502 MOLEX5-991502 Datasheet
195Kb / 3P
   5.00mm (.197") Pitch Beau??Eurostyle??Surface Mount Compatible Locking Header, 2 Circuits
991502 MOLEX11-991502 Datasheet
41Kb / 2P
   5.00mm Pitch Beau Eurostyle Surface Mount Compatible Locking Header, 2
991503 MOLEX5-991503 Datasheet
195Kb / 3P
   5.00mm (.197") Pitch Beau??Eurostyle??Surface Mount Compatible Locking Header, 3 Circuits
991503 MOLEX11-991503 Datasheet
41Kb / 2P
   5.00mm Pitch Beau Eurostyle Surface Mount Compatible Locking Header, 3
991504 MOLEX5-991504 Datasheet
195Kb / 3P
   5.00mm (.197") Pitch Beau??Eurostyle??Surface Mount Compatible Locking Header, 4 Circuits
More results

Similar Description - 99153X-99

ManufacturerPart #DatasheetDescription
logo
List of Unclassifed Man...
MGDM-150 ETC2-MGDM-150 Datasheet
494Kb / 17P
   Hi-Rel DC/DC CONVERTER
MGDM-04 ETC2-MGDM-04 Datasheet
225Kb / 14P
   Hi-Rel DC/DC CONVERTER
logo
Peregrine Semiconductor
PE99151DIE PSEMI-PE99151DIE Datasheet
1Mb / 15P
   Hi-Rel 2A DC-DC Converter
logo
List of Unclassifed Man...
MGDM-75 ETC2-MGDM-75 Datasheet
618Kb / 17P
   Hi-Rel DC/DC CONVERTER 75W POWER
MGDM-10 ETC2-MGDM-10 Datasheet
560Kb / 14P
   Hi-Rel DC/DC CONVERTER 10W POWER
logo
Murata Manufacturing Co...
MYMGK00506ERSR MURATA1-MYMGK00506ERSR Datasheet
1,018Kb / 22P
   MonoBK?? 6A DC-DC Converter Series
MYTNA1R86RELA2RA MURATA1-MYTNA1R86RELA2RA Datasheet
1Mb / 26P
   UltraBK™ 6A DC–DC Converter Module
2020
MYTNC1R86RELA2RA MURATA1-MYTNC1R86RELA2RA Datasheet
2Mb / 39P
   UltraBK™ 6A DC–DC Converter Module
2020
logo
Intersil Corporation
ZL2106 INTERSIL-ZL2106 Datasheet
624Kb / 35P
   6A Digital-DC Synchronous Step-Down DC-DC Converter
logo
Renesas Technology Corp
ZL2106 RENESAS-ZL2106 Datasheet
1Mb / 29P
   6A Digital-DC Synchronous Step-Down DC/DC Converter
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com