Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

NCV887740D1R2G Datasheet(PDF) 10 Page - ON Semiconductor

Part # NCV887740D1R2G
Description  Automotive Grade Start-Stop Non-Synchronous Boost Controller
Download  15 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ONSEMI [ON Semiconductor]
Direct Link  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

NCV887740D1R2G Datasheet(HTML) 10 Page - ON Semiconductor

Back Button NCV887740D1R2G Datasheet HTML 6Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 7Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 8Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 9Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 10Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 11Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 12Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 13Page - ON Semiconductor NCV887740D1R2G Datasheet HTML 14Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 15 page
background image
NCV8877
www.onsemi.com
10
R
OSC +
2859
(Fsw * 170)
Where: fsw: switching frequency [kHz]
ROSC: resistor from ROSC pin to GND [k]
Note: The ROSC resistor ground return to the NCV8877 pin
3 must be independent of power grounds.
3. Select Current Sense Resistor
Current sensing for peak current mode control and current
limit relies on the MOSFET current signal, which is
measured with a ground referenced amplifier. The easiest
method of generating this signal is to use a current sense
resistor from the source of the MOSFET to device ground.
The sense resistor should be selected as follows:
R
S +
V
CL
I
CL
Where: RS: sense resistor [
W]
VCL: current limit threshold voltage [V]
ICL: desire current limit [A]
4. Select Output Inductor
The output inductor controls the current ripple that occurs
over a switching period. A high current ripple will result in
excessive power loss and ripple current requirements. A low
current ripple will result in a poor control signal and a slow
current slew rate in case of load steps. A good starting point
for peak to peak ripple is around 20−40% of the inductor
current at the maximum load at the worst case VIN, but
operation should be verified empirically. The worst case VIN
is half of VOUT, or whatever VIN is closest to half of VOUT.
After choosing a peak current ripple value, calculate the
inductor value as follows:
L
+
V
IN(WC) DWC
DI
L,max fs
Where: VIN(WC): VIN value as close as possible to
half of VOUT [V]
DWC: duty cycle at VIN(WC)
DIL,max: maximum peak to peak ripple [A]
The maximum average inductor current can be calculated
as follows:
I
L,AVG +
V
OUTIOUT(max)
V
IN(min)h
The Peak Inductor current can be calculated as follows:
I
L,peak + IL,avg )
DI
L,max
2
Where: IL,peak: Peak inductor current value [A]
5. Select Output Capacitors
The output capacitors smooth the output voltage and
reduce the overshoot and undershoot associated with line
transients. The steady state output ripple associated with the
output capacitors can be calculated as follows:
V
OUT(ripple) +
DI
OUT(max)
fC
OUT
)
I
OUT(max)
1
* D )
V
IN(min)D
2fL
R
ESR
The capacitors need to survive an RMS ripple current as
follows:
I
Cout(RMS) + IOUT
D
WC
D
WC
)
D
WC
12
D
WC
L
R
OUT
T
SW
2
The use of parallel ceramic bypass capacitors is strongly
encouraged to help with the transient response.
6. Select Input Capacitors
The input capacitor reduces voltage ripple on the input to
the module associated with the ac component of the input
current.
I
Cin(RMS) +
V
IN(WC)
2 D
WC
LfsVOUT23
7. Select Compensator Components
Current Mode control method employed by the NCV8877
allows the use of a simple, Type II compensation to optimize
the dynamic response according to system requirements.
8. Select MOSFET(s)
In order to ensure the gate drive voltage does not drop out
the MOSFET(s) chosen must not violate the following
inequality:
Q
g(total) v
I
drv
fs
Where: Qg(total): Total Gate Charge of MOSFET(s) [C]
Idrv: Drive voltage current [A]
fs: Switching Frequency [Hz]
The maximum RMS Current can be calculated as follows:
I
Q(max) + Iout
D
D
The maximum voltage across the MOSFET will be the
maximum output voltage, which is the higher of the
maximum input voltage and the regulated output voltaged:
V
Q(max) + VOUT(max)
9. Select Diode
The output diode rectifies the output current. The average
current through diode will be equal to the output current:
I
D(avg) + IOUT(max)
Additionally, the diode must block voltage equal to the
higher of the output voltage and the maximum input voltage:
V
D(max) + VOUT(max)
The maximum power dissipation in the diode can be
calculated as follows:
P
D + Vf (max) IOUT(max)


Similar Part No. - NCV887740D1R2G

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCV887740D1R2G ONSEMI-NCV887740D1R2G Datasheet
131Kb / 17P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
September, 2016 ??Rev. 7
NCV887740D1R2G ONSEMI-NCV887740D1R2G Datasheet
131Kb / 17P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
April, 2017 ??Rev. 9
More results

Similar Description - NCV887740D1R2G

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCV8876 ONSEMI-NCV8876 Datasheet
148Kb / 11P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
June, 2013 ??Rev. 1
NCV8877 ONSEMI-NCV8877_17 Datasheet
131Kb / 17P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
April, 2017 ??Rev. 9
NCV8878 ONSEMI-NCV8878_16 Datasheet
208Kb / 15P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
August, 2016 ??Rev. 2
NCV8876 ONSEMI-NCV8876_16 Datasheet
212Kb / 15P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
August, 2016 ??Rev. 12
NCV8878 ONSEMI-NCV8878 Datasheet
126Kb / 15P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
October, 2015 ??Rev. 1
NCV8877 ONSEMI-NCV8877_16 Datasheet
131Kb / 17P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
September, 2016 ??Rev. 7
NCV8877 ONSEMI-NCV8877_V01 Datasheet
257Kb / 17P
   Automotive Grade Start-Stop Non-Synchronous Boost Controller
November, 2021 ??Rev. 11
NCV8870 ONSEMI-NCV8870_16 Datasheet
239Kb / 15P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 10
NCV887200 ONSEMI-NCV887200 Datasheet
145Kb / 16P
   Automotive Grade Non-Synchronous Boost Controller
June, 2015 ??Rev. 7
NCV8871 ONSEMI-NCV8871_16 Datasheet
242Kb / 17P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 12
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com