Electronic Components Datasheet Search
  English  ▼

Delete All


Preview PDF Download HTML

TC426 Datasheet(PDF) 6 Page - Microchip Technology

Part No. TC426
Description  1.5A Dual High-Speed Power MOSFET Drivers
Download  16 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  MICROCHIP [Microchip Technology]
Homepage  http://www.microchip.com

TC426 Datasheet(HTML) 6 Page - Microchip Technology

Zoom Inzoom in Zoom Outzoom out
 6 / 16 page
background image
DS21415B-page 6
 2002 Microchip Technology Inc.
Supply Bypassing
Charging and discharging large capacitive loads
quickly requires large currents. For example, charging
a 1000pF load to 18V in 25nsec requires an 0.72A
current from the device power supply.
To ensure low supply impedance over a wide frequency
range, a parallel capacitor combination is recom-
mended for supply bypassing. Low-inductance ceramic
disk capacitors with short lead lengths (< 0.5 in.) should
be used. A 1
µF film capacitor in parallel with one or two
µF ceramic disk capacitors normally provides
adequate bypassing.
The TC426 and TC428 contain inverting drivers.
Ground potential drops developed in common ground
impedances from input to output will appear as
negative feedback and degrade switching speed
Individual ground returns for the input and output
circuits or a ground plane should be used.
Input Stage
The input voltage level changes the no-load or
quiescent supply current. The N-channel MOSFET
input stage transistor drives a 2.5mA current source
load. With a logic "1" input, the maximum quiescent
supply current is 8mA. Logic "0" input level signals
Minimum power dissipation occurs for logic "0" inputs
for the TC426/TC427/TC428. Unused driver inputs
must be connected to VDD or GND.
The drivers are designed with 100mV of hysteresis.
This provides clean transitions and minimizes output
stage current spiking when changing states. Input
voltage thresholds are approximately 1.5V, making the
device TTL compatible over the 4.5V to 18V supply
operating range. Input current is less than 1
µA over this
The TC426/TC427/TC428 may be directly driven by
the TL494, SG1526/1527, SG1524, SE5560, and
similar switch-mode power supply integrated circuits.
Power Dissipation
The supply current vs frequency and supply current
vs capacitive load characteristic curves will aid in
determining power dissipation calculations.
The TC426/TC427/TC428 CMOS drivers have greatly
reduced quiescent DC power consumption. Maximum
quiescent current is 8mA compared to the DS0026
dissipation is typically 40mW.
Two other power dissipation components are:
• Output stage AC and DC load power.
• Transition state power.
Output stage power is:
Po = PDC + PAC
= Vo (IDC) + f CL VS
Vo = DC output voltage
IDC = DC output load current
= Switching frequency
Vs = Supply voltage
In power MOSFET drive applications the PDC term is
negligible. MOSFET power transistors are high imped-
ance, capacitive input devices. In applications where
resistive loads or relays are driven, the PDC component
will normally dominate.
The magnitude of PAC is readily estimated for several
1. f
= 200kHZ
1. f
= 200kHz
2. CL =1000pf
2. CL =1000pf
3. Vs
= 18V
3. Vs
= 15V
4. PAC = 65mW
4. PAC = 45mW
During output level state changes, a current surge will
flow through the series connected N and P channel
output MOSFETS as one device is turning "ON" while
the other is turning "OFF". The current spike flows only
during output transitions. The input levels should not be
maintained between the logic "0" and logic "1" levels.
Unused driver inputs must be tied to ground and
not be allowed to float. Average power dissipation will
be reduced by minimizing input rise times. As shown in
the characteristic curves, average supply current is
frequency dependent.

Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Datasheet Download

Related Electronics Part Number

Part NumberComponents DescriptionHtml ViewManufacturer
TC44261.5A DUAL HIGH-SPEED POWER MOSFET DRIVERS 1 2 3 4 5 MoreTelCom Semiconductor, Inc
TC4426A1.5A DUAL HIGH-SPEED POWER MOSFET DRIVERS 1 2 3 4 5 TelCom Semiconductor, Inc
TC44261.5A DUAL HIGH-SPEED POWER MOSFET DRIVERS 1 2 3 4 5 MoreMicrochip Technology
TC4426A1.5A Dual High-Speed Power MOSFET Drivers 1 2 3 4 5 MoreMicrochip Technology
TC4261.5A DUAL HIGH-SPEED POWER MOSFET DRIVERS 1 2 3 4 5 TelCom Semiconductor, Inc
MAX4426Dual High-Speed 1.5A MOSFET Drivers 1 2 3 4 5 MoreMaxim Integrated Products
TC44233A DUAL HIGH-SPEED POWER MOSFET DRIVERS 1 2 3 4 5 MoreTelCom Semiconductor, Inc
TC44233A DUAL HIGH-SPEED POWER MOSFET DRIVERS 1 2 3 4 5 MoreMicrochip Technology
TC44041.5A DUAL OPEN-DRAIN MOSFET DRIVERS 1 2 3 4 5 MoreTelCom Semiconductor, Inc
EL7202CHigh Speed Dual Channel Power MOSFET Drivers 1 2 3 4 5 MoreElantec Semiconductor

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn