Electronic Components Datasheet Search
  English  ▼

Delete All


Preview PDF Download HTML

LT1959 Datasheet(PDF) 10 Page - Linear Technology

Part No. LT1959
Description  4.5A, 500kHz Step-Down Switching Regulator
Download  24 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  LINER [Linear Technology]
Homepage  http://www.linear.com

LT1959 Datasheet(HTML) 10 Page - Linear Technology

Zoom Inzoom in Zoom Outzoom out
 10 / 24 page
background image
For most applications the output inductor will fall in the
range of 3
µH to 20µH. Lower values are chosen to reduce
physical size of the inductor. Higher values allow more
output current because they reduce peak current seen by
the LT1959 switch, which has a 4.5A limit. Higher values
also reduce output ripple voltage, and reduce core loss.
Graphs in the Typical Performance Characteristics section
show maximum output load current versus inductor size
and input voltage.
When choosing an inductor you might have to consider
maximum load current, core and copper losses, allowable
component height, output voltage ripple, EMI, fault cur-
rent in the inductor, saturation, and of course, cost. The
following procedure is suggested as a way of handling
these somewhat complicated and conflicting requirements.
1. Choose a value in microhenries from the graphs of
maximum load current and core loss. Choosing a small
inductor with lighter loads may result in discontinuous
mode of operation, but the LT1959 is designed to work
well in either mode. Keep in mind that lower core loss
means higher cost, at least for closed core geometries
like toroids. The core loss graphs show absolute loss
for a 3.3V output, so actual percent losses must be
calculated for each situation.
Assume that the average inductor current is equal to
load current and decide whether or not the inductor
must withstand continuous fault conditions. If maxi-
mum load current is 0.5A, for instance, a 0.5A inductor
may not survive a continuous 4.5A overload condition.
Dead shorts will actually be more gentle on the induc-
tor because the LT1959 has foldback current limiting.
2. Calculate peak inductor current at full load current to
ensure that the inductor will not saturate. Peak current
can be significantly higher than output current, espe-
cially with smaller inductors and lighter loads, so don’t
omit this step. Powdered iron cores are forgiving
because they saturate softly, whereas ferrite cores
saturate abruptly. Other core materials fall in between
somewhere. The following formula assumes continu-
ous mode of operation, but it errs only slightly on the
high side for discontinuous mode, so it can be used for
all conditions.
fL V
()( )( )
VIN = Maximum input voltage
f = Switching frequency, 500kHz
3. Decide if the design can tolerate an “open” core geom-
etry like a rod or barrel, which have high magnetic field
radiation, or whether it needs a closed core like a toroid
to prevent EMI problems. One would not want an open
core next to a magnetic storage media, for instance!
This is a tough decision because the rods or barrels are
temptingly cheap and small and there are no helpful
guidelines to calculate when the magnetic field radia-
tion will be a problem.
4. Start shopping for an inductor (see representative
surface mount units in Table 2) which meets the
requirements of core shape, peak current (to avoid
saturation), average current (to limit heating), and fault
current (if the inductor gets too hot, wire insulation will
melt and cause turn-to-turn shorts). Keep in mind that
all good things like high efficiency, low profile, and high
temperature operation will increase cost, sometimes
dramatically. Get a quote on the cheapest unit first to
calibrate yourself on price, then ask for what you really
5. After making an initial choice, consider the secondary
things like output voltage ripple, second sourcing, etc.
Use the experts in the Linear Technology’s applica-
tions department if you feel uncertain about the final
choice. They have experience with a wide range of
inductor types and can tell you about the latest devel-
opments in low profile, surface mounting, etc.

Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 

Datasheet Download

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn