Electronic Components Datasheet Search
  English  ▼

Delete All


Preview PDF Download HTML

AM29F400B Datasheet(PDF) 2 Page - Advanced Micro Devices

Part No. AM29F400B
Description  4 Megabit (512 K x 8-Bit/256 K x 16-Bit) CMOS 5.0 Volt-only Boot Sector Flash Memory
Download  37 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  AMD [Advanced Micro Devices]
Homepage  http://www.amd.com
Logo AMD - Advanced Micro Devices

AM29F400B Datasheet(HTML) 2 Page - Advanced Micro Devices

  AM29F400B Datasheet HTML 1Page - Advanced Micro Devices AM29F400B Datasheet HTML 2Page - Advanced Micro Devices AM29F400B Datasheet HTML 3Page - Advanced Micro Devices AM29F400B Datasheet HTML 4Page - Advanced Micro Devices AM29F400B Datasheet HTML 5Page - Advanced Micro Devices AM29F400B Datasheet HTML 6Page - Advanced Micro Devices AM29F400B Datasheet HTML 7Page - Advanced Micro Devices AM29F400B Datasheet HTML 8Page - Advanced Micro Devices AM29F400B Datasheet HTML 9Page - Advanced Micro Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 2 / 37 page
background image
The Am29F400B is a 4 Mbit, 5.0 volt-only Flash
memory organized as 524,288 bytes or 262,144 words.
The device is offered in 44-pin SO and 48-pin TSOP
packages. The word-wide data (x16) appears on
DQ15–DQ0; the byte-wide (x8) data appears on DQ7–
DQ0. This device is designed to be programmed in-
system with the standard system 5.0 volt VCC supply.
A 12.0 V VPP is not required for write or erase opera-
tions. The device can also be programmed in standard
EPROM programmers.
This device is manufactured using AMD’s 0.35 µm
process technology, and offers all the features and ben-
efits of the Am29F400, which was manufactured using
0.5 µm process technology.
The standard device offers access times of 55, 60, 70,
90, 120, and 150 ns, allowing high speed microproces-
sors to operate without wait states. To eliminate bus
contention the device has separate chip enable (CE#),
write enable (WE#) and output enable (OE#) controls.
The device requires only a single 5.0 volt power sup-
ply for both read and write functions. Internally gener-
ated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with the
JEDEC single-power-supply Flash standard. Com-
mands are written to the command register using
standard microprocessor write timings. Register con-
tents serve as input to an internal state-machine that
controls the erase and programming circuitry. Write
cycles also internally latch addresses and data needed
for the programming and erase operations. Reading
data out of the device is similar to reading from other
Flash or EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the Embedded
Program algorithm—an internal algorithm that auto-
matically times the program pulse widths and verifies
proper cell margin.
Device erasure occurs by executing the erase com-
mand sequence. This initiates the Embedded Erase
algorithm—an internal algorithm that automatically
preprograms the array (if it is not already pro-
grammed) before executing the erase operation. Dur-
ing erase, the device automatically times the erase
pulse widths and verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and
DQ6/DQ2 (toggle) status bits. After a program or
erase cycle has been completed, the device is ready to
read array data or accept another command.
The sector erase architecture allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection measures include a low
VCC detector that automatically inhibits write opera-
tions during power transitions. The hardware sector
protection feature disables both program and erase
operations in any combination of the sectors of mem-
ory. This can be achieved via programming equipment.
The Erase Suspend feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The hardware RESET# pin terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The system can place the device into the standby mode.
Power consumption is greatly reduced in this mode.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effectiveness.
The device electrically erases all bits within a sector
simultaneously via Fowler-Nordheim tunneling. The
data is programmed using hot electron injection.

Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37 

Datasheet Download

Go To PDF Page

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn