Electronic Components Datasheet Search
  English  â–¼

Delete All


Preview PDF Download HTML

AD7228ABN Datasheet(PDF) 7 Page - Analog Devices

Part No. AD7228ABN
Description  LC2MOS Octal 8-Bit DAC
Download  8 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  AD [Analog Devices]
Homepage  http://www.analog.com
Logo AD - Analog Devices

AD7228ABN Datasheet(HTML) 7 Page - Analog Devices

  AD7228ABN Datasheet HTML 1Page - Analog Devices AD7228ABN Datasheet HTML 2Page - Analog Devices AD7228ABN Datasheet HTML 3Page - Analog Devices AD7228ABN Datasheet HTML 4Page - Analog Devices AD7228ABN Datasheet HTML 5Page - Analog Devices AD7228ABN Datasheet HTML 6Page - Analog Devices AD7228ABN Datasheet HTML 7Page - Analog Devices AD7228ABN Datasheet HTML 8Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 7 / 8 page
background image
DACs for correct timing relationships during the calibration
cycle of the instrument.
Figure 10b. AD7228A Timing Deskew Circuit
The DACs on the AD7228A can be paired together to form a
coarse/fine adjust function as indicated in Figure 11. The func-
tion is achieved using one external op amp and a few resistors
per pair of DACs.
DAC1 is the most significant or coarse DAC. Data is first
loaded to this DAC to coarsely set the output voltage. DAC2 is
then used to fine tune this output voltage. Varying the ratio of
R1 to R2 varies the relative effect of the coarse and fine DACs
on the output voltage. For the resistor values shown, DAC2 has
a resolution of 150
µV in a 10 V output range. Since each DAC
on the AD7228A is guaranteed monotonic, the coarse adjust-
ment and fine adjustment are each monotonic. One application
for this is as a set-point controller (see ?Circuit Applications of
the AD7226 Quad CMOS DAC? available from Analog Devices,
Publication Number E873?15?11/84).
Figure 11. Coarse/Fine Adjust Circuit
The circuit of Figure 12 shows how one DAC of the AD7228,
in this case DAC1, may be used in a feedback configuration to
provide a programmable reference for itself and the other seven
converters. The relationship of VREF to VIN is expressed by
+ G
+ G ? D
where G = R2/R1
Figure 13 shows typical plots of VREF versus digital code, D1, for
three different values of G. With VIN = 2.5 V and G = 3 the
voltage at the output varies between 2.5 V and 10 V giving an
effective 10-bit dynamic range to the other seven converters. For
correct operation of the circuit, VSS should be ?5 V and R1
greater than 6.8 k
Figure 12. Self-Programmable Reference
Figure 13. Variation of VREF with Feedback Configuration
Figure 14. AD7228A to 8085A/Z80 Interface
Figure 15. AD7228A to 6809/6502 Interface

Html Pages

1  2  3  4  5  6  7  8 

Datasheet Download

Go To PDF Page

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn