Electronic Components Datasheet Search
  English  ▼

Delete All


Preview PDF Download HTML

RT9715FGB Datasheet(PDF) 10 Page - Richtek Technology Corporation

Part No. RT9715FGB
Description  Operating Range : 2.7V to 5.5V, Reverse Blocking Current
Download  15 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  RICHTEK [Richtek Technology Corporation]
Homepage  http://www.richtek.com

RT9715FGB Datasheet(HTML) 10 Page - Richtek Technology Corporation

Zoom Inzoom in Zoom Outzoom out
 10 / 15 page
background image
DS9715-03 April 2011
The faster trip time of the RT9715 power distribution allows
designers to design hubs that can operate through faults.
The RT9715 provides low on-resistance and internal fault-
reporting circuitry to meet voltage regulation and fault
notification requirements.
Because the devices are also power switches, the designer
of self-powered hubs has the flexibility to turn off power to
output ports. Unlike a normal MOSFET, the devices have
controlled rise and fall times to provide the needed inrush
current limiting required for the bus-powered hub power
Supply Filter/Bypass Capacitor
A 1uF low-ESR ceramic capacitor from VIN to GND, located
at the device is strongly recommended to prevent the input
voltage drooping during hot-plug events. However, higher
capacitor values will further reduce the voltage droop on
the input. Furthermore, without the bypass capacitor, an
output short may cause sufficient ringing on the input (from
source lead inductance) to destroy the internal control
circuitry. The input transient must not exceed 6V of the
absolute maximum supply voltage even for a short duration.
Output Filter Capacitor
A low-ESR 150uF aluminum electrolytic or tantalum
between VOUT and GND is strongly recommended to meet
the 330mV maximum droop requirement in the hub VBUS
(Per USB 2.0, output ports must have a minimum 120uF
of low-ESR bulk capacitance per hub). Standard bypass
methods should be used to minimize inductance and
resistance between the bypass capacitor and the
downstream connector to reduce EMI and decouple voltage
droop caused when downstream cables are hot-insertion
transients. Ferrite beads in series with VBUS, the ground
line and the 0.1uF bypass capacitors at the power connector
pins are recommended for EMI and ESD protection. The
bypass capacitor itself should have a low dissipation factor
to allow decoupling at higher frequencies.
Voltage Drop
The USB specification states a minimum port-output voltage
in two locations on the bus, 4.75V out of a Self-Powered
Hub port and 4.40V out of a Bus-Powered Hub port. As
with the Self-Powered Hub, all resistive voltage drops for
the Bus-Powered Hub must be accounted for to guarantee
voltage regulation (see Figure 7-47 of Universal Serial
Specification Revision 2.0 ).
The following calculation determines VOUT (MIN) for multi-
ple ports (NPORTS) ganged together through one switch (if
using one switch per port, NPORTS is equal to 1) :
VOUT (MIN) = 4.75V
− [ II x ( 4 x RCONN + 2 x RCABLE ) ] −
RCONN = Resistance of connector contacts
(two contacts per connector)
RCABLE = Resistance of upstream cable wires
(one 5V and one GND)
RSWITCH = Resistance of power switch
Ω typical for RT9715)
VPCB = PCB voltage drop
The USB specification defines the maximum resistance
per contact (RCONN) of the USB connector to be 30m
Ω and
the drop across the PCB and switch to be 100mV. This
basically leaves two variables in the equation: the
resistance of the switch and the resistance of the cable.
If the hub consumes the maximum current (II) of 500mA,
the maximum resistance of the cable is 90m
The resistance of the switch is defined as follows :
RSWITCH = { 4.75V
− 4.4V − [ 0.5A x ( 4 x 30mΩ + 2 x
Ω) ] − VPCB }
÷ ( 0.1A x NPORTS )
= (200mV
− VPCB )
÷ ( 0.1A x NPORTS )
If the voltage drop across the PCB is limited to 100mV,
the maximum resistance for the switch is 250m
Ω for four
ports ganged together. The RT9715, with its maximum
Ω on-resistance over temperature, can fit the demand
of this requirement.
Thermal Considerations
For continuous operation, do not exceed absolute
maximum operation junction temperature. The maximum
power dissipation depends on the thermal resistance of IC
package, PCB layout, the rate of surroundings airflow and
temperature difference between junction to ambient. The

Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

Datasheet Download

Link URL

Privacy Policy
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com

Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn