Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF HTML

KSZ8873MLLJ Datasheet(PDF) 17 Page - Micrel Semiconductor

Part No. KSZ8873MLLJ
Description  Integrated 3-Port 10/100 Managed Switch with PHYs
Download  108 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  MICREL [Micrel Semiconductor]
Homepage  http://www.micrel.com
Logo 

KSZ8873MLLJ Datasheet(HTML) 17 Page - Micrel Semiconductor

Zoom Inzoom in Zoom Outzoom out
 17 / 108 page
background image
Micrel, Inc.
KSZ8873MLLJ
September 2011
17
M9999-091911-1.8
Functional Description
The KSZ8873MLLJ contains two 10/100 physical layer transceivers and three MAC units with an integrated Layer 2
managed switch.
The KSZ8873MLLJ has the flexibility to reside in either a managed or unmanaged design. In a managed design, the host
processor has complete control of the KSZ8873MLLJ via the SMI interface, MIIM interface, SPI bus, or I
2C bus. An
unmanaged design is achieved through I/O strapping and/or EEPROM programming at system reset time.
On the media side, the KSZ8873MLLJ supports IEEE 802.3 10BASE-T and 100BASE-TX on both PHY ports. Physical
signal transmission and reception are enhanced through the use of patented analog circuitries that make the design more
efficient and allow for lower power consumption and smaller chip die size.
Functional Overview: Physical Layer Transceiver
100BASE-TX Transmit
The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI
conversion, and MLT3 encoding and transmission.
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit
stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data is
further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by an
external1% 11.8K
 resistor for the 1:1 transformer ratio.
The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude
balance, overshoot, and timing jitter. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX
transmitter.
100BASE-TX Receive
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair
cable. Since the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on
comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization.
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.
Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to
compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit
converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.
The clock recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used
to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B
decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.
PLL Clock Synthesizer
The KSZ8873MLLJ generates 125MHz, 62.5MHz, and 31.25MHz clocks for system timing. Internal clocks are generated
from an external 25MHz or 50MHz crystal or oscillator.
Scrambler/De-scrambler (100BASE-TX Only)
The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI)
and baseline wander. Transmitted data is scrambled through the use of an 11-bit wide linear feedback shift register
(LFSR). The scrambler generates a 2047-bit non-repetitive sequence, and the receiver then de-scrambles the incoming
data stream using the same sequence as at the transmitter.
10BASE-T Transmit
The 10BASE-T driver is incorporated with the 100BASE-TX driver to allow for transmission using the same magnetics. They are
internally wave-shaped and pre-emphasized into outputs with a typical 2.3V amplitude. The harmonic contents are at least 27dB
below the fundamental frequency when driven by an all-ones Manchester-encoded signal.


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100   ...More


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn