Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

SN74S1053 Datasheet(PDF) 4 Page - Texas Instruments

Click here to check the latest version.
Part No. SN74S1053
Description  16-BIT SCHOTTKY BARRIER DIODE BUS-TERMINATION ARRAY
Download  7 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  TI [Texas Instruments]
Homepage  http://www.ti.com
Logo 

SN74S1053 Datasheet(HTML) 4 Page - Texas Instruments

   
Zoom Inzoom in Zoom Outzoom out
 4 / 7 page
background image
SN74S1053
16-BIT SCHOTTKY BARRIER DIODE
BUS-TERMINATION ARRAY
SDLS017A – SEPTEMBER 1990 – REVISED AUGUST 1997
4
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
APPLICATION INFORMATION
Large negative transients occurring at the inputs of memory devices (DRAMs, SRAMs, EPROMs, etc.) or on the
CLOCK lines of many clocked devices can result in improper operation of the devices. The SN74S1053 diode
termination array helps suppress negative transients caused by transmission-line reflections, crosstalk, and
switching noise.
Diode terminations have several advantages when compared to resistor termination schemes. Split resistor or
Thevenin equivalent termination can cause a substantial increase in power consumption. The use of a single resistor
to ground to terminate a line usually results in degradation of the output high level, resulting in reduced noise immunity.
Series damping resistors placed on the outputs of the driver reduce negative transients, but they also can increase
propagation delays down the line, as a series resistor reduces the output drive capability of the driving device. Diode
terminations have none of these drawbacks.
The operation of the diode arrays in reducing negative transients is explained in the following figures. The diode
conducts current when the voltage reaches a negative value large enough for the diode to turn on. Suppression of
negative transients is tracked by the current-voltage characteristic curve for that diode. Typical current versus voltage
curves for the SN74S1053 are shown in Figures 3 and 4.
To illustrate how the diode arrays act to reduce negative transients at the end of a transmission line, the test setup
in Figure 5 was evaluated. The resulting waveforms with and without the diode are shown in Figure 6.
The maximum effectiveness of the diode arrays in suppressing negative transients occurs when the diode arrays are
placed at the end of a line and/or the end of a long stub branching off a main transmission line. The diodes also can
be used to reduce the negative transients that occur due to discontinuities in the middle of a line. An example of this
is a slot in a backplane that is provided for an add-on card.
VI – Forward Voltage – V
DIODE FORWARD CURRENT
vs
DIODE FORWARD VOLTAGE
–50
–40
–20
–10
0
–90
–30
0
0.2
0.4
0.6
0.8
1
1.2
–70
–60
–80
–100
1.4
1.6
1.8
2
TA = 25°C
Figure 3. Typical Input Current vs Input Voltage
(Lower Diode)


Html Pages

1  2  3  4  5  6  7 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn