Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

1PMT5913BT3 Datasheet(PDF) 5 Page - Motorola, Inc

Part No. 1PMT5913BT3
Description  PLASTIC SURFACE MOUNT ZENER DIODES 2.5 WATTS 3.3.91 VOLTS
Download  6 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  MOTOROLA [Motorola, Inc]
Direct Link  http://www.freescale.com
Logo MOTOROLA - Motorola, Inc

1PMT5913BT3 Datasheet(HTML) 5 Page - Motorola, Inc

  1PMT5913BT3 Datasheet HTML 1Page - Motorola, Inc 1PMT5913BT3 Datasheet HTML 2Page - Motorola, Inc 1PMT5913BT3 Datasheet HTML 3Page - Motorola, Inc 1PMT5913BT3 Datasheet HTML 4Page - Motorola, Inc 1PMT5913BT3 Datasheet HTML 5Page - Motorola, Inc 1PMT5913BT3 Datasheet HTML 6Page - Motorola, Inc  
Zoom Inzoom in Zoom Outzoom out
 5 / 6 page
background image
5
MOTOROLA
1PMT5913BT3 through 1PMT5948BT3
INFORMATION FOR USING THE POWERMITE SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
POWERMITE
0.100
2.54
0.025
0.635
0.050
1.27
0.105
2.67
0.030
0.762
inches
mm
POWERMITE POWER DISSIPATION
The power dissipation of the Powermite is a function of the
drain pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipation.
Power dissipation for a surface mount device is determined
by TJ(max), the maximum rated junction temperature of the
die, R
θJA, the thermal resistance from the device junction to
ambient, and the operating temperature, TA. Using the
values provided on the data sheet for the Powermite
package, PD can be calculated as follows:
PD =
TJ(max) – TA
R
θJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature TA of 25°C, one can
calculate the power dissipation of the device which in this
case is 386 milliwatts.
PD =
150
°C – 25°C
324
°C/W
= 386 milliwatts
The 324
°C/W for the Powermite package assumes the use
of the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 386 milliwatts. There
are other alternatives to achieving higher power dissipation
from the Powermite package. Another alternative would be
to use a ceramic substrate or an aluminum core board such
as Thermal Clad
™. Using a board material such as Thermal
Clad, an aluminum core board, the power dissipation can be
doubled using the same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and soldering
should be 100
°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10
°C.
The soldering temperature and time shall not exceed
260
°C for more than 10 seconds.
When shifting from preheating to soldering, the maximum
temperature gradient shall be 5
°C or less.
After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.


Html Pages

1  2  3  4  5  6 


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn