Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

VIPER12ADIP Datasheet(PDF) 8 Page - STMicroelectronics

Part No. VIPER12ADIP
Description  LOW POWER OFF LINE SMPS PRIMARY SWITCHER
Download  15 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  STMICROELECTRONICS [STMicroelectronics]
Homepage  http://www.st.com
Logo 

VIPER12ADIP Datasheet(HTML) 8 Page - STMicroelectronics

Zoom Inzoom in Zoom Outzoom out
 8 / 15 page
background image
VIPer12ADIP / VIPer12AS
8/15
Figure 8 : Rectangular U-I output characteristics for battery charger
RECTANGULAR U-I OUTPUT
CHARACTERISTIC
A complete regulation scheme can achieve
combined and accurate output characteristics.
Figure 8 presents a secondary feedback through
an optocoupler driven by a TSM101. This device
offers two operational amplifiers and a voltage
reference, thus allowing the regulation of both
output voltage and current. An integrated OR
function performs the combination of the two
resulting error signals, leading to a dual voltage
and current limitation, known as a rectangular
output characteristic.
This type of power supply is especially useful for
battery chargers where the output is mainly used in
current mode, in order to deliver a defined charging
rate. The accurate voltage regulation is also
convenient for Li-ion batteries which require both
modes of operation.
WIDE RANGE OF VDD VOLTAGE
The VDD pin voltage range extends from 9V to 38V.
This feature offers a great flexibility in design to
achieve various behaviors. In figure 8 a forward
configuration has been chosen to supply the
device with two benefits:
– as soon as the device starts switching, it
immediately receives some energy from the
auxiliary winding. C5 can be therefore reduced
and a small ceramic chip (100 nF) is sufficient to
insure the filtering function. The total start up
time from the switch on of input voltage to output
voltage presence is dramatically decreased.
– the
output
current
characteristic
can
be
maintained even with very low or zero output
voltage. Since the TSM101 is also supplied in
forward mode, it keeps the current regulation up
whatever the output voltage is.The VDD pin
voltage may vary as much as the input voltage,
that is to say with a ratio of about 4 for a wide
range application.
T1
D3
C5
C4
D4
C3
T2
F1
C1
C10
-
+
-
+
Vref
Vcc
GND
U2
TSM101
R6
R9
R10
R4
C9
R7
R5
R8
C8
R3
ISO1
D2
D5
R2
C7
R1
C2
D1
FB
VDD
DRAIN
SOURCE
CONTROL
U1
VIPerX2A
C6
AC IN
DCOUT
GND


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn