Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

LMC660AI Datasheet(PDF) 6 Page - National Semiconductor (TI)

[Old version datasheet] Texas Instruments acquired National semiconductor.
Part # LMC660AI
Description  CMOS Quad Operational Amplifier
Download  12 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  NSC [National Semiconductor (TI)]
Direct Link  http://www.national.com
Logo NSC - National Semiconductor (TI)

LMC660AI Datasheet(HTML) 6 Page - National Semiconductor (TI)

Back Button LMC660AI Datasheet HTML 2Page - National Semiconductor (TI) LMC660AI Datasheet HTML 3Page - National Semiconductor (TI) LMC660AI Datasheet HTML 4Page - National Semiconductor (TI) LMC660AI Datasheet HTML 5Page - National Semiconductor (TI) LMC660AI Datasheet HTML 6Page - National Semiconductor (TI) LMC660AI Datasheet HTML 7Page - National Semiconductor (TI) LMC660AI Datasheet HTML 8Page - National Semiconductor (TI) LMC660AI Datasheet HTML 9Page - National Semiconductor (TI) LMC660AI Datasheet HTML 10Page - National Semiconductor (TI) Next Button
Zoom Inzoom in Zoom Outzoom out
 6 / 12 page
background image
Application Hints (Continued)
Every amplifier has some capacitance between each input
and AC ground, and also some differential capacitance be-
tween the inputs. When the feedback network around an
amplifier is resistive, this input capacitance (along with any
additional capacitance due to circuit board traces, the
socket, etc.) and the feedback resistors create a pole in the
feedback path. In the following General Operational Amplifier
circuit,
Figure 2 the frequency of this pole is
where C
S is the total capacitance at the inverting input, in-
cluding amplifier input capcitance and any stray capacitance
from the IC socket (if one is used), circuit board traces, etc.,
and R
P is the parallel combination of RF and RIN. This for-
mula, as well as all formulae derived below, apply to invert-
ing and non-inverting op-amp configurations.
When the feedback resistors are smaller than a few k
Ω, the
frequency of the feedback pole will be quite high, since C
S is
generally less than 10 pF. If the frequency of the feedback
pole is much higher than the “ideal” closed-loop bandwidth
(the nominal closed-loop bandwidth in the absence of C
S),
the pole will have a negligible effect on stability, as it will add
only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to
10 times the “ideal” −3 dB frequency, a feedback capacitor,
C
F, should be connected between the output and the invert-
ing input of the op amp. This condition can also be stated in
terms of the amplifier’s low-frequency noise gain: To main-
tain stability a feedback capacitor will probably be needed if
where
is the amplifier’s low-frequency noise gain and GBW is the
amplifier’s gain bandwidth product. An amplifier’s low-
frequency noise gain is represented by the formula
regardless of whether the amplifier is being used in inverting
or non-inverting mode. Note that a feedback capacitor is
more likely to be needed when the noise gain is low and/or
the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor
will probably be needed), and the noise gain is large enough
that:
the following value of feedback capacitor is recommended:
If
the feedback capacitor should be:
Note that these capacitor values are usually significant
smaller than those given by the older, more conservative for-
mula:
Using the smaller capacitors will give much higher band-
width with little degradation of transient response. It may be
necessary in any of the above cases to use a somewhat
larger feedback capacitor to allow for unexpected stray ca-
pacitance, or to tolerate additional phase shifts in the loop, or
excessive capacitive load, or to decrease the noise or band-
width, or simply because the particular circuit implementa-
tion needs more feedback capacitance to be sufficiently
stable. For example, a printed circuit board’s stray capaci-
tance may be larger or smaller than the breadboard’s, so the
actual optimum value for C
F may be different from the one
estimated using the breadboard. In most cases, the values
of C
F should be checked on the actual circuit, starting with
the computed value.
Capacitive Load Tolerance
Like many other op amps, the LMC660 may oscillate when
its applied load appears capacitive. The threshold of oscilla-
tion varies both with load and circuit gain. The configuration
most sensitive to oscillation is a unity-gain follower. See
Typical Performance Characteristics.
The load capacitance interacts with the op amp’s output re-
sistance to create an additional pole. If this pole frequency is
sufficiently low, it will degrade the op amp’s phase margin so
that the amplifier is no longer stable at low gains. As shown
in
Figure 3, the addition of a small resistor (50
Ω to 100Ω)in
series with the op amp’s output, and a capacitor (5 pF to
10 pF) from inverting input to output pins, returns the phase
margin to a safe value without interfering with lower-
frequency circuit operation. Thus larger values of capaci-
tance can be tolerated without oscillation. Note that in all
cases, the output will ring heavily when the load capacitance
is near the threshold for oscillation.
DS008767-6
CS consists of the amplifier’s input capacitance plus any stray capacitance
from the circuit board and socket. CF compensates for the pole caused by
CS and the feedback resistors.
FIGURE 2. General Operational Amplifier Circuit
www.national.com
6


Similar Part No. - LMC660AI

ManufacturerPart #DatasheetDescription
logo
National Semiconductor ...
LMC660AI NSC-LMC660AI Datasheet
873Kb / 14P
   CMOS Quad Operational Amplifier
LMC660AIM NSC-LMC660AIM Datasheet
461Kb / 14P
   CMOS Quad Operational Amplifier
LMC660AIM NSC-LMC660AIM Datasheet
873Kb / 14P
   CMOS Quad Operational Amplifier
logo
Texas Instruments
LMC660AIM TI1-LMC660AIM Datasheet
1Mb / 22P
[Old version datasheet]   LMC660 CMOS Quad Operational Amplifier
LMC660AIM/NOPB TI1-LMC660AIM/NOPB Datasheet
1Mb / 22P
[Old version datasheet]   LMC660 CMOS Quad Operational Amplifier
More results

Similar Description - LMC660AI

ManufacturerPart #DatasheetDescription
logo
Texas Instruments
LMC6034 TI1-LMC6034 Datasheet
1Mb / 22P
[Old version datasheet]   CMOS Quad Operational Amplifier
logo
National Semiconductor ...
LMC660EP NSC-LMC660EP Datasheet
891Kb / 15P
   CMOS Quad Operational Amplifier
LMC660 NSC-LMC660_06 Datasheet
873Kb / 14P
   CMOS Quad Operational Amplifier
LMC660 NSC-LMC660 Datasheet
461Kb / 14P
   CMOS Quad Operational Amplifier
LMC6034 NSC-LMC6034 Datasheet
301Kb / 12P
   CMOS Quad Operational Amplifier
LMC6044 NSC-LMC6044 Datasheet
387Kb / 12P
   CMOS Quad Micropower Operational Amplifier
logo
Texas Instruments
LMC6034IMX TI-LMC6034IMX Datasheet
1Mb / 22P
[Old version datasheet]   LMC6034 CMOS Quad Operational Amplifier
LMC6044 TI1-LMC6044_17 Datasheet
1Mb / 23P
[Old version datasheet]   CMOS Quad Micropower Operational Amplifier
LMC660CMX TI1-LMC660CMX Datasheet
1Mb / 22P
[Old version datasheet]   LMC660 CMOS Quad Operational Amplifier
logo
National Semiconductor ...
LMC6084 NSC-LMC6084 Datasheet
729Kb / 14P
   Precision CMOS Quad Operational Amplifier
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com