Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

AD7321 Datasheet(PDF) 14 Page - Analog Devices

Part No. AD7321
Description  500 kSPS, 2-Channel, Software-Selectable, True Bipolar Input, 12-Bit Plus Sign ADC
Download  36 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  AD [Analog Devices]
Homepage  http://www.analog.com
Logo 

AD7321 Datasheet(HTML) 14 Page - Analog Devices

Zoom Inzoom in Zoom Outzoom out
 14 / 36 page
background image
AD7321
Rev. 0 | Page 14 of 36
TERMINOLOGY
Differential Nonlinearity
Negative Full-Scale Error
This is the difference between the measured and the ideal 1 LSB
change between any two adjacent codes in the ADC.
This applies when using twos complement output coding and
any of the bipolar analog input ranges. This is the deviation of
the first code transition (10 ... 000) to (10 ... 001) from the ideal
(that is, −4 × VREF + 1 LSB, −2 × VREF + 1 LSB, −VREF + 1 LSB)
after adjusting for the bipolar zero code error.
Integral Nonlinearity
This is the maximum deviation from a straight line passing
through the endpoints of the ADC transfer function. The
endpoints of the transfer function are zero scale (a point 1 LSB
below the first code transition) and full scale (a point 1 LSB
above the last code transition).
Negative Full-Scale Error Match
This is the difference in negative full-scale error between any
two input channels.
Track-and-Hold Acquisition Time
Offset Code Error
The track-and-hold amplifier returns into track mode after the
14th SCLK rising edge. Track-and-hold acquisition time is the
time required for the output of the track-and-hold amplifier to
reach its final value, within ±½ LSB, after the end of a
conversion. For the ±2.5 V range, the specified acquisition time
is the time required for the track-and-hold amplifier to settle to
within ±1 LSB.
This applies to straight binary output coding. It is the deviation
of the first code transition (00 ... 000) to (00 ... 001) from the
ideal, that is, AGND + 1 LSB.
Offset Error Match
This is the difference in offset error between any two input
channels.
Gain Error
Signal to (Noise + Distortion) Ratio
This applies to straight binary output coding. It is the deviation
of the last code transition (111 ... 110) to (111 ... 111) from the
ideal (that is, 4 × VREF − 1 LSB, 2 × VREF − 1 LSB, VREF −1 LSB)
after adjusting for the offset error.
This is the measured ratio of signal to (noise + distortion) at the
output of the A/D converter. The signal is the rms amplitude of
the fundamental. Noise is the sum of all non-fundamental signals
up to half the sampling frequency (fS/2), excluding dc. The ratio
is dependent on the number of quantization levels in the digi-
tization process. The more levels, the smaller the quantization
noise. Theoretically, the signal to (noise + distortion) ratio for
an ideal N-bit converter with a sine wave input is given by
Gain Error Match
This is the difference in gain error between any two input
channels.
Bipolar Zero Code Error
Signal to (Noise + Distortion) = (6.02 N + 1.76) dB
This applies when using twos complement output coding and a
bipolar analog input. It is the deviation of the midscale
transition (all 1s to all 0s) from the ideal input voltage, that is,
AGND − 1 LSB.
For a 13-bit converter, this is 80.02 dB.
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the rms sum of
harmonics to the fundamental. For the AD7321 it is defined as
Bipolar Zero Code Error Match
This refers to the difference in bipolar zero code error between
any two input channels.
1
2
6
2
5
2
4
2
3
2
2
log
20
)
dB
(
V
V
V
V
V
V
THD
+
+
+
+
=
Positive Full-Scale Error
where V1 is the rms amplitude of the fundamental, and V2, V3,
V4, V5, and V6 are the rms amplitudes of the second through the
sixth harmonics.
This applies when using twos complement output coding and
any of the bipolar analog input ranges. It is the deviation of the
last code transition (011 ... 110) to (011 ... 111) from the ideal
(4 × VREF − 1 LSB, 2 × VREF − 1 LSB, VREF − 1 LSB) after
adjusting for the bipolar zero code error.
Peak Harmonic or Spurious Noise
Peak harmonic or spurious noise is defined as the ratio of the
rms value of the next largest component in the ADC output
spectrum (up to fS/2, excluding dc) to the rms value of the
fundamental. Normally, the value of this specification is
determined by the largest harmonic in the spectrum, but for
ADCs where the harmonics are buried in the noise floor, the
largest harmonic could be a noise peak.
Positive Full-Scale Error Match
This is the difference in positive full-scale error between any
two input channels.


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn