Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

AD5678 Datasheet(PDF) 18 Page - Analog Devices

Part No. AD5678
Description  4 × 12-Bit and 4 × 16-Bit Octal DAC with On-Chip Reference in 14-Lead TSSOP
Download  28 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  AD [Analog Devices]
Homepage  http://www.analog.com
Logo 

AD5678 Datasheet(HTML) 18 Page - Analog Devices

Zoom Inzoom in Zoom Outzoom out
 18 / 28 page
background image
AD5678
Rev. A | Page 18 of 28
TERMINOLOGY
Relative Accuracy
For the DAC, relative accuracy, or integral nonlinearity (INL), is
a measure of the maximum deviation in LSBs from a straight
line passing through the endpoints of the DAC transfer
function. Figure 5, Figure 7, and Figure 9 show plots of typical
INL vs. code.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ±1 LSB
maximum ensures monotonicity. This DAC is guaranteed mono-
tonic by design. Figure 6, Figure 8, and Figure 10 show plots of
typical DNL vs. code.
Offset Error
Offset error is a measure of the difference between the actual
VOUT and the ideal VOUT, expressed in millivolts in the linear
region of the transfer function. Offset error is measured on the
AD5678 with Code 512 loaded into the DAC register. It can be
negative or positive and is expressed in millivolts.
Zero-Code Error
Zero-code error is a measure of the output error when zero
code (0x0000) is loaded into the DAC register. Ideally, the
output should be 0 V. The zero-code error is always positive in
the AD5678, because the output of the DAC cannot go below 0 V.
It is due to a combination of the offset errors in the DAC and
output amplifier. Zero-code error is expressed in millivolts.
Figure 18 shows a plot of typical zero-code error vs.
temperature.
Gain Error
Gain error is a measure of the span error of the DAC. It is the
deviation in slope of the DAC transfer characteristic from the
ideal, expressed as a percentage of the full-scale range.
Zero-Code Error Drift
Zero-code error drift is a measure of the change in zero-code
error with a change in temperature. It is expressed in μV/°C.
Gain Error Drift
Gain error drift is a measure of the change in gain error with
changes in temperature. It is expressed in (ppm of full-scale
range)/°C.
Full-Scale Error
Full-scale error is a measure of the output error when full-scale
code (0xFFFF) is loaded into the DAC register. Ideally, the
output should be VDD − 1 LSB. Full-scale error is expressed as a
percentage of the full-scale range. Figure 17 shows a plot of
typical full-scale error vs. temperature.
Digital-to-Analog Glitch Impulse
Digital-to-analog glitch impulse is the impulse injected into the
analog output when the input code in the DAC register changes
state. It is normally specified as the area of the glitch in nV-s
and is measured when the digital input code is changed by
1 LSB at the major carry transition (0x7FFF to 0x8000). See
Figure 34.
DC Power Supply Rejection Ratio (PSRR)
PSRR indicates how the output of the DAC is affected by changes
in the supply voltage. PSRR is the ratio of the change in VOUT to
a change in VDD for full-scale output of the DAC. It is measured
in decibels. VREF is held at 2 V, and VDD is varied ±10%.
DC Crosstalk
DC crosstalk is the dc change in the output level of one DAC in
response to a change in the output of another DAC. It is measured
with a full-scale output change on one DAC (or soft power-down
and power-up) while monitoring another DAC. It is expressed
in microvolts.
DC crosstalk due to load current change is a measure of the
impact that a change in load current on one DAC has to another
DAC kept at midscale. It is expressed in microvolts per milliamp.
Reference Feedthrough
Reference feedthrough is the ratio of the amplitude of the signal
at the DAC output to the reference input when the DAC output
is not being updated (that is, LDAC is high). It is expressed in
decibels.
Channel-to-Channel Isolation
Channel-to-channel isolation is the ratio of the amplitude of the
signal at the output of one DAC to a sine wave on the reference
input of another DAC. It is measured in decibels.
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of a DAC from the digital input pins of the
device, but is measured when the DAC is not being written to
(SYNC held high). It is specified in nV-s and measured with a
full-scale change on the digital input pins, that is, from all 0s to
all 1s or vice versa.


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn