Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

80C31X2 Datasheet(PDF) 25 Page - NXP Semiconductors

Part # 80C31X2
Description  80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
Download  62 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  PHILIPS [NXP Semiconductors]
Direct Link  http://www.nxp.com
Logo PHILIPS - NXP Semiconductors

80C31X2 Datasheet(HTML) 25 Page - NXP Semiconductors

Back Button 80C31X2 Datasheet HTML 21Page - NXP Semiconductors 80C31X2 Datasheet HTML 22Page - NXP Semiconductors 80C31X2 Datasheet HTML 23Page - NXP Semiconductors 80C31X2 Datasheet HTML 24Page - NXP Semiconductors 80C31X2 Datasheet HTML 25Page - NXP Semiconductors 80C31X2 Datasheet HTML 26Page - NXP Semiconductors 80C31X2 Datasheet HTML 27Page - NXP Semiconductors 80C31X2 Datasheet HTML 28Page - NXP Semiconductors 80C31X2 Datasheet HTML 29Page - NXP Semiconductors Next Button
Zoom Inzoom in Zoom Outzoom out
 25 / 62 page
background image
Philips Semiconductors
Product data
P80C3xX2; P80C5xX2;
P87C5xX2
80C51 8-bit microcontroller family
4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V),
low power, high speed (30/33 MHz)
2003 Jan 24
25
shifted to the left one position. The value that comes in from the right
is the value that was sampled at the P3.0 pin at S5P2 of the same
machine cycle.
As data bits come in from the right, 1s shift out to the left. When the
0 that was initially loaded into the rightmost position arrives at the
leftmost position in the shift register, it flags the RX Control block to
do one last shift and load SBUF. At S1P1 of the 10th machine cycle
after the write to SCON that cleared RI, RECEIVE is cleared as RI is
set.
More About Mode 1
Ten bits are transmitted (through TxD), or received (through RxD): a
start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the
stop bit goes into RB8 in SCON. In the 80C51 the baud rate is
determined by the Timer 1 or Timer 2 overflow rate.
Figure 15 shows a simplified functional diagram of the serial port in
Mode 1, and associated timings for transmit receive.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The “write to SBUF” signal also loads a 1 into
the 9th bit position of the transmit shift register and flags the TX
Control unit that a transmission is requested. Transmission actually
commences at S1P1 of the machine cycle following the next rollover
in the divide-by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the “write to SBUF” signal.)
The transmission begins with activation of SEND which puts the
start bit at TxD. One bit time later, DATA is activated, which enables
the output bit of the transmit shift register to TxD. The first shift pulse
occurs one bit time after that.
As data bits shift out to the right, zeros are clocked in from the left.
When the MSB of the data byte is at the output position of the shift
register, then the 1 that was initially loaded into the 9th position is
just to the left of the MSB, and all positions to the left of that contain
zeros. This condition flags the TX Control unit to do one last shift
and then deactivate SEND and set TI. This occurs at the 10th
divide-by-16 rollover after “write to SBUF.”
Reception is initiated by a detected 1-to-0 transition at RxD. For this
purpose RxD is sampled at a rate of 16 times whatever baud rate
has been established. When a transition is detected, the
divide-by-16 counter is immediately reset, and 1FFH is written into
the input shift register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.
The 16 states of the counter divide each bit time into 16ths. At the
7th, 8th, and 9th counter states of each bit time, the bit detector
samples the value of RxD. The value accepted is the value that was
seen in at least 2 of the 3 samples. This is done for noise rejection.
If the value accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for another 1-to-0
transition. This is to provide rejection of false start bits. If the start bit
proves valid, it is shifted into the input shift register, and reception of
the rest of the frame will proceed.
As data bits come in from the right, 1s shift out to the left. When the
start bit arrives at the leftmost position in the shift register (which in
mode 1 is a 9-bit register), it flags the RX Control block to do one
last shift, load SBUF and RB8, and set RI. The signal to load SBUF
and RB8, and to set RI, will be generated if, and only if, the following
conditions are met at the time the final shift pulse is generated.:
1. R1 = 0, and
2. Either SM2 = 0, or the received stop bit = 1.
If either of these two conditions is not met, the received frame is
irretrievably lost. If both conditions are met, the stop bit goes into
RB8, the 8 data bits go into SBUF, and RI is activated. At this time,
whether the above conditions are met or not, the unit goes back to
looking for a 1-to-0 transition in RxD.
More About Modes 2 and 3
Eleven bits are transmitted (through TxD), or received (through
RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data
bit, and a stop bit (1). On transmit, the 9th data bit (TB8) can be
assigned the value of 0 or 1. On receive, the 9the data bit goes into
RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64
(12-clock mode) or 1/16 or 1/32 the oscillator frequency (6-clock
mode) the oscillator frequency in Mode 2. Mode 3 may have a
variable baud rate generated from Timer 1 or Timer 2.
Figures 16 and 17 show a functional diagram of the serial port in
Modes 2 and 3. The receive portion is exactly the same as in Mode
1. The transmit portion differs from Mode 1 only in the 9th bit of the
transmit shift register.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The “write to SBUF” signal also loads TB8 into
the 9th bit position of the transmit shift register and flags the TX
Control unit that a transmission is requested. Transmission
commences at S1P1 of the machine cycle following the next rollover
in the divide-by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the “write to SBUF” signal.)
The transmission begins with activation of SEND, which puts the
start bit at TxD. One bit time later, DATA is activated, which enables
the output bit of the transmit shift register to TxD. The first shift pulse
occurs one bit time after that. The first shift clocks a 1 (the stop bit)
into the 9th bit position of the shift register. Thereafter, only zeros
are clocked in. Thus, as data bits shift out to the right, zeros are
clocked in from the left. When TB8 is at the output position of the
shift register, then the stop bit is just to the left of TB8, and all
positions to the left of that contain zeros. This condition flags the TX
Control unit to do one last shift and then deactivate SEND and set
TI. This occurs at the 11th divide-by-16 rollover after “write to SUBF.”
Reception is initiated by a detected 1-to-0 transition at RxD. For this
purpose RxD is sampled at a rate of 16 times whatever baud rate
has been established. When a transition is detected, the
divide-by-16 counter is immediately reset, and 1FFH is written to the
input shift register.
At the 7th, 8th, and 9th counter states of each bit time, the bit
detector samples the value of R-D. The value accepted is the value
that was seen in at least 2 of the 3 samples. If the value accepted
during the first bit time is not 0, the receive circuits are reset and the
unit goes back to looking for another 1-to-0 transition. If the start bit
proves valid, it is shifted into the input shift register, and reception of
the rest of the frame will proceed.
As data bits come in from the right, 1s shift out to the left. When the
start bit arrives at the leftmost position in the shift register (which in
Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do
one last shift, load SBUF and RB8, and set RI.
The signal to load SBUF and RB8, and to set RI, will be generated
if, and only if, the following conditions are met at the time the final
shift pulse is generated.
1. RI = 0, and
2. Either SM2 = 0, or the received 9th data bit = 1.
If either of these conditions is not met, the received frame is
irretrievably lost, and RI is not set. If both conditions are met, the
received 9th data bit goes into RB8, and the first 8 data bits go into
SBUF. One bit time later, whether the above conditions were met or
not, the unit goes back to looking for a 1-to-0 transition at the RxD
input.


Similar Part No. - 80C31X2

ManufacturerPart #DatasheetDescription
logo
NXP Semiconductors
80C31X PHILIPS-80C31X Datasheet
280Kb / 22P
   CMOS single-chip 8-bit microcontrollers
1996 Aug 16
More results

Similar Description - 80C31X2

ManufacturerPart #DatasheetDescription
logo
NXP Semiconductors
P80C31X2 NXP-P80C31X2 Datasheet
408Kb / 62P
   80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)
2003 Jan 24
P87C51X2BBD157 PHILIPS-P87C51X2BBD157 Datasheet
409Kb / 62P
   80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)
2003 Jan 24
P87C654X2 PHILIPS-P87C654X2 Datasheet
497Kb / 88P
   80C51 8-bit microcontroller family 16 kB OTP/ROM, 256B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)
2004 Apr 20
P83C654X2 NXP-P83C654X2 Datasheet
501Kb / 88P
   80C51 8-bit microcontroller family 16 kB OTP/ROM, 256B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)
2004 Apr 20
P80C3XX2 PHILIPS-P80C3XX2_15 Datasheet
409Kb / 62P
   low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)null 128B/256B RAM
2003 Jan 24
P83C660X2 NXP-P83C660X2 Datasheet
572Kb / 102P
   80C51 8-bit microcontroller family 16KB OTP/ROM, 512B RAM low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz), two 400KB I2C interfaces
2003 Oct 02
8XC54 PHILIPS-8XC54 Datasheet
355Kb / 56P
   80C51 8-bit microcontroller family 8K-4K/256-1K OTP/ROM/ROMless, low voltage (2.7V-5.5V), low power, high speed (33 MHz)
2000 Aug 07
8XC54_51FX_51RX PHILIPS-8XC54_51FX_51RX_15 Datasheet
371Kb / 56P
   80C51 8-bit microcontroller family 8K??4K/256??K OTP/ROM/ROMless, low voltage (2.7V??.5V), low power, high speed (33 MHz)
2000 Aug 07
89C58 PHILIPS-89C58 Datasheet
226Kb / 32P
   80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
89C52 PHILIPS-89C52 Datasheet
245Kb / 39P
   80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
2002 Jan 15
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com