Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

RX6000 Datasheet(PDF) 9 Page - Murata Manufacturing Co., Ltd.

Part No. RX6000
Description  RFM products are now Murata products
Download  10 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  MURATA [Murata Manufacturing Co., Ltd.]
Homepage  http://www.murata.com
Logo 

RX6000 Datasheet(HTML) 9 Page - Murata Manufacturing Co., Ltd.

 
Zoom Inzoom in Zoom Outzoom out
 9 / 10 page
background image
©2010-2014 by Murata Electronics N.A., Inc.
RX6000 (R) 10/20/14
Page 9 of 10
www.murata.com
9
LPFADJ
This pin is the receiver low-pass filter bandwidth adjust. The filter bandwidth is set by a resistor RLPF between this pin and
ground. The resistor value can range from 330 K to 820 ohms, providing a filter 3 dB bandwidth fLPF from 4.5 kHz to 1.8 MHz.
The resistor value is determined by:
RLPF = 1445/ fLPF, where RLPF is in kilohms, and fLPF is in kHz
A ±5% resistor should be used to set the filter bandwidth. This will provide a 3 dB filter bandwidth between fLPF and 1.3* fLPF
with variations in supply voltage, temperature, etc. The filter provides a three-pole, 0.05 degree equiripple phase response.
The peak drive current available from RXDATA increases in proportion to the filter bandwidth setting.
Pin
Name
Description
10
GND2
GND2 is an IC ground pin. It should be connected to GND1 by a short, low inductance trace.
11
RREF
RREF is the external reference resistor pin. A 100 K reference resistor is connected between this pin and ground. A ±1%
resistor tolerance is recommended. It is important to keep the total capacitance between ground, Vcc and this node to less
than 5 pF to maintain current source stability. If THLD1 and/or THDL2 are connected to RREF through resistor values less
that 1.5 K, their node capacitance must be added to the RREF node capacitance and the total should not exceed 5 pF.
12
THLD2
THLD2 is the “dB-below-peak” data slicer (DS2) threshold adjust pin. The threshold is set by a 0 to 200 K resistor RTH2
between this pin and RREF. Increasing the value of the resistor decreases the threshold below the peak detector value
(increases difference) from 0 to 120 mV. For most applications, this threshold should be set at 6 dB below peak, or 60 mV for
a 50%-50% RF amplifier duty cycle. The value of the THLD2 resistor is given by:
RTH2 = 1.67*V, where RTH2 is in kilohms and the threshold V is in mV
A ±1% resistor tolerance is recommended for the THLD2 resistor. Leaving the THLD2 pin open disables the dB-below-peak
data slicer operation.
13
THLD1
The THLD1 pin sets the threshold for the standard data slicer (DS1) through a resistor RTH1 to RREF. The threshold is
increased by increasing the resistor value. Connecting this pin directly to RREF provides zero threshold. The value of the
resistor depends on whether THLD2 is used. For the case that THLD2 is not used, the acceptable range for the resistor is 0
to 100 K, providing a THLD1 range of 0 to 90 mV. The resistor value is given by:
RTH1 = 1.11*V, where RTH1 is in kilohms and the threshold V is in mV
For the case that THLD2 is used, the acceptable range for the THLD1 resistor is 0 to 200 K, again providing a THLD1 range
of 0 to 90 mV. The resistor value is given by:
RTH1 = 2.22*V, where RTH1 is in kilohms and the threshold V is in mV
A ±1% resistor tolerance is recommended for the THLD1 resistor. Note that a non-zero DS1 threshold is required for proper
AGC operation.
14
PRATE
The interval between the falling edge of an ON pulse to the first RF amplifier and the rising edge of the next ON pulse to the
first RF amplifier tPRI is set by a resistor RPR between this pin and ground. The interval tPRI can be adjusted between 0.1 and
5 µs with a resistor in the range of 51 K to 2000 K. The value of RPR is given by:
RPR = 404* tPRI + 10.5, where tPRI is in µs, and RPR is in kilohms
A ±5% resistor value is recommended. When the PWIDTH pin is connected to Vcc through a 1 M resistor, the RF amplifiers
operate at a nominal 50%-50% duty cycle, facilitating high data rate operation. In this case, the period tPRC from start-to-start
of ON pulses to the first RF amplifier is controlled by the PRATE resistor over a range of 0.1 to 1.1 µs using a resistor of 11 K
to 220 K. In this case the value of RPR is given by:
RPR = 198* tPRC - 8.51, where tPRC is in µs and RPR is in kilohms
A ±5% resistor value should also be used in this case. Please refer to the ASH Transceiver Designer’s Guide for additional
amplifier duty cycle information. It is important to keep the total capacitance between ground, Vcc and this pin to less than 5
pF to maintain stability.
15
PWIDTH
The PWIDTH pin sets the width of the ON pulse to the first RF amplifier tPW1 with a resistor RPW to ground (the ON pulse
width to the second RF amplifier tPW2 is set at 1.1 times the pulse width to the first RF amplifier). The ON pulse width tPW1
can be adjusted between 0.55 and 1 µs with a resistor value in the range of 200 K to 390 K. The value of RPW is given by:
RPW = 404* tPW1 - 18.6, where tPW1 is in µs and RPW is in kilohms
A ±5% resistor value is recommended. When this pin is connected to Vcc through a 1 M resistor, the RF amplifiers operate at
a nominal 50%-50% duty cycle, facilitating high data rate operation. In this case, the RF amplifier ON times are controlled by
the PRATE resistor as described above. It is important to keep the total capacitance between ground, Vcc and this node to
less than 5 pF to maintain stability. When using the high data rate operation with the sleep mode, connect the 1 M resistor
between this pin and CNTRL1 (Pin 17), so this pin is low in the sleep mode.
16
VCC2
VCC2 is the positive supply voltage pin for the receiver RF section. This pin must be bypassed with an RF capacitor, which
may be shared with VCC1. VCC2 must also be bypassed with a 1 to 10 µF tantalum or electrolytic capacitor.
17
CNTRL1
CNTRL1 and CNTRL0 select the receiver modes. CNTRL1 and CNTRL0 both high place the unit in the receive mode.
CNTRL1 and CNTRL0 both low place the unit in the power-down (sleep) mode. CNTRL1 is a high-impedance input (CMOS
compatible). An input voltage of 0 to 300 mV is interpreted as a logic low. An input voltage of Vcc - 300 mV or greater is inter-
preted as a logic high. An input voltage greater than Vcc + 200 mV should not be applied to this pin. A logic high requires a
maximum source current of 40 µA. Sleep mode requires a maximum sink current of 1 µA. This pin must be held at a logic
level; it cannot be left unconnected.


Html Pages

1  2  3  4  5  6  7  8  9  10 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn