Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

SiC464ED-T1-GE3 Datasheet(PDF) 7 Page - Vishay Siliconix

Part # SiC464ED-T1-GE3
Description  4.5 V to 60 V Input, 2 A, 4 A, 6 A, 10 A Synchronous Buck Regulators
Download  29 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  VISHAY [Vishay Siliconix]
Direct Link  http://www.vishay.com
Logo VISHAY - Vishay Siliconix

SiC464ED-T1-GE3 Datasheet(HTML) 7 Page - Vishay Siliconix

Back Button SiC464ED-T1-GE3 Datasheet HTML 3Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 4Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 5Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 6Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 7Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 8Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 9Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 10Page - Vishay Siliconix SiC464ED-T1-GE3 Datasheet HTML 11Page - Vishay Siliconix Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 29 page
background image
SiC461, SiC462, SiC463, SiC464
www.vishay.com
Vishay Siliconix
S18-0393-Rev. K, 16-Apr-18
7
Document Number: 65124
For technical questions, contact: powerictechsupport@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
pulse is generated for a fixed time. During the on-time pulse,
the high side MOSFET will be turned on. Once the on-time
pulse expires, the low side MOSFET will be turned on after
a dead time period. The low side MOSFET will stay on for a
minimum duration equal to the minimum off-time (tOFF_MIN.)
and remains on until VRAMP crosses VCOMP. The cycle is then
repeated.
Fig. 6 illustrates the basic block diagram for voltage mode,
constant on time architecture with external ripple injection,
VRAMP, while Fig. 5 illustrates the basic operational principle.
Fig. 5 - SiC46x Operational Principle
The need for ripple injection in this architecture is explained
below. First, let us understand the basic principles of this
control architecture:
• The reference of a basic voltage mode COT regulator
is replaced with a high gain error amplifier loop. The loop
ensures the DC component of the output voltage follows
the
internal
accurate
reference
voltage,
providing
excellent regulation
• A second voltage feedback path via VSNS with a VRAMP
scheme
ensures
rapid
correction
of
the
transient
perturbation
• This establishes two voltage loops, one is the steady state
voltage feedback path (via the FB pin) and the other is the
feed forward path (via the VSNS pin). The scheme gives the
user the fast transient response of a COT regulator and
the stable, jitter free, line and load regulation performance
of a PWM controller
Choosing the Ripple Injection Component Values
For stability purposes the SiC46x requires adequate ripple
injection amplitude. Adequate ripple amplitude is required
for two main reasons:
1. To reduce jitter due to noise coupled into the system
2. To provide stable operation. Sub harmonic oscillation
can occur with constant on time ripple control if below
condition is not met
Therefore, when the converter design uses an all ceramic
output capacitor or other low ESR output capacitors,
instability can occur. In order to avoid this, a VRAMP network
is used to increase the equivalent RESR in order to satisfy the
above condition. The VRAMP amplitude must be large
enough to avoid instability or noise sensitivity but not too
large that it degrades transient performance. To ensure
stable operation under CCM, DCM and ultrasonic mode,
minimum VRAMP amplitude of 100 mV is recommended for
the SiC46x family of regulators. A maximum VRAMP of
900 mV is recommended so as not to degrade transient
response.
Fig. 6 - SiC46x Control Block Diagram
VRAMP amplitude is a function of frequency, VIN, and VOUT.
Equation 1
VRAMP amplitude is a function of VIN, VOUT, and switching
frequency and should be adjusted whenever VIN, VOUT, or
switching frequency is changed.
For a given buck regulator design, VOUT and switching
frequency is typically fixed, while the converter may be
expected to work for a wide VIN range. The VRAMP amplitude
will increase as VIN is increased and increase the power
dissipated by Rx. A proper selection of RX, package size and
value, should take into account the maximum power
dissipation at the expected operating conditions.
In order to optimize the VRAMP amplitude over a desired VIN
range use the following procedure to calculate Rx, Cx, and
Cy.
1. The equation below calculates RX as a function of VIN,
VOUT, and maximum allowable power dissipated by RX.
where
PRX_MAX. is the maximum allowed power
dissipation in Rx. Note, the maximum power dissipation
of a 0603 sized resistor is typically 25 mW. Power
dissipation derating must be taken into account for high
ambient temperatures
2. The equation below calculates CX_MIN. as a function of
VIN and maximum allowed VRAMP amplitude.
where VRAMP_MAX. = 900 mV
3. Using VRAMP equation, calculate VRAMP_MIN. at minimum
VIN based on the Rx and the minimum Cx value
calculated above
4. If VRAMP_MIN. is > 200 mV, set Cx to CX_MIN., otherwise set
Cx to (Cx_MIN. x VRAMP_MIN./200 mV). If VRIPPLE_MIN. is
< 100 mV, increase PRX_MAX. and recalculate RX and CX
5. Cy should be large enough not to distort the VRAMP and
small enough not to load excessively the VRAMP network
(Rx
and
Cx).
Please
use
the
follow
formula:
Cy = 1/(0.82 x fsw)
This procedure allows for a maximum range of operation. In
order to simplify the procedure for calculating VRAMP and
compensation
components,
a
calculator
is
provided
(visit www.vishay.com/doc?65124).
Fixed on-time
V
RAMP
V
COMP
PWM
ESR
C
OUT
t
ON
2
---------
C
x
R
x
L
C
y
EA
Ripple
based
controller
R1
R2
REF
R
COMP
C
COMP
Load
Q1
Q2
V
IN
C
OUT
C
IN
V
RAMP
V
IN
V
OUT
 V
OUT
V
IN
f
sw
C
x
R
x

------------------------------------------------------
=
R
x
V
IN_MAX.
V
OUT
1D

P
RX_MAX.
--------------------------------------------------------------------
=
C
X_MIN.
P
RX_MAX.
V
IN_MAX.
f
sw
V
RAMP_MAX.
---------------------------------------------------------------------------
=


Similar Part No. - SiC464ED-T1-GE3

ManufacturerPart #DatasheetDescription
logo
Vishay Siliconix
SIC464ED-T1-GE3 VISHAY-SIC464ED-T1-GE3 Datasheet
748Kb / 28P
   4.5 V to 60 V Input, 2 A, 4 A, 6 A, 10 A microBUCK짰 DC/DC Converter
01-Jan-2022
More results

Similar Description - SiC464ED-T1-GE3

ManufacturerPart #DatasheetDescription
logo
Vishay Siliconix
SIC462 VISHAY-SIC462 Datasheet
1Mb / 23P
   4.5 V to 60 V Input, 6 A Synchronous Buck Regulator
Rev. D, 13-Mar-17
SIC466 VISHAY-SIC466 Datasheet
942Kb / 24P
   4.5 V to 60 V Input, 2 A, 4 A, 6 A, 10 A microBUCK짰 DC/DC Converter
01-Jan-2022
SIC464 VISHAY-SIC464_V01 Datasheet
748Kb / 28P
   4.5 V to 60 V Input, 2 A, 4 A, 6 A, 10 A microBUCK짰 DC/DC Converter
01-Jan-2022
SIP12110 VISHAY-SIP12110 Datasheet
374Kb / 16P
   6 A, 4.5 V to 15 V Input Synchronous Buck Regulator
Rev. A, 15-Sep-14
logo
Texas Instruments
TPS56637 TI1-TPS56637_19 Datasheet
1Mb / 30P
[Old version datasheet]   4.5-V to 28-V Input, 6-A Synchronous Buck Converter
TPS56637_1904 TI1-TPS56637_1904 Datasheet
1Mb / 30P
[Old version datasheet]   4.5-V to 28-V Input, 6-A Synchronous Buck Converter
logo
Vishay Siliconix
SIP12110 VISHAY-SIP12110_V01 Datasheet
400Kb / 16P
   6 A, 4.5 V to 15 V Input Synchronous Buck Regulator
01-Jan-2022
logo
Texas Instruments
TPS56637 TI1-TPS56637 Datasheet
858Kb / 27P
[Old version datasheet]   4.5-V to 28-V Input, 6-A Synchronous Buck Converter
TPS56637 TI1-TPS56637_18 Datasheet
1Mb / 30P
[Old version datasheet]   4.5-V to 28-V Input, 6-A Synchronous Buck Converter
logo
Vishay Siliconix
SIP12109 VISHAY-SIP12109 Datasheet
317Kb / 17P
   4 A, 4.5 V to 15 V Input Synchronous Buck Regulator
Rev. A, 16-Dec-13
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com