Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

CY7C1381KV33 Datasheet(PDF) 9 Page - Cypress Semiconductor

Part No. CY7C1381KV33
Description  18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
Download  34 Pages
Scroll/Zoom Zoom In 100% Zoom Out
Maker  CYPRESS [Cypress Semiconductor]
Homepage  http://www.cypress.com
Logo 

CY7C1381KV33 Datasheet(HTML) 9 Page - Cypress Semiconductor

Zoom Inzoom in Zoom Outzoom out
 9 / 34 page
background image
CY7C1381KV33/CY7C1381KVE33
CY7C1383KV33/CY7C1383KVE33
Document Number: 001-97888 Rev. *F
Page 9 of 34
Functional Overview
All synchronous inputs pass through input registers controlled by
the rising edge of the clock. Maximum access delay from the
clock rise (tCDV) is 6.5 ns (133 MHz device).
CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/CY7C138
3KVE33 supports secondary cache in systems using a linear or
interleaved burst sequence. The linear burst sequence is suited
for processors that use a linear burst sequence. The burst order
is user selectable, and is determined by sampling the MODE
input. Accesses can be initiated with the processor address
strobe (ADSP) or the controller address strobe (ADSC). Address
advancement through the burst sequence is controlled by the
ADV input. A two-bit on-chip wraparound burst counter captures
the first address in a burst sequence and automatically
increments the address for the rest of the burst access.
Byte write operations are qualified with the byte write enable
(BWE) and byte write select (BWX) inputs. A global write enable
(GW) overrides all byte write inputs and writes data to all four
bytes. All writes are simplified with on-chip synchronous
self-timed write circuitry.
Three synchronous chip selects (CE1, CE2, CE3) and an
asynchronous output enable (OE) provide for easy bank
selection and output tristate control. ADSP is ignored if CE1 is
HIGH.
Single Read Accesses
A single read access is initiated when the following conditions
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted
active, and (2) ADSP or ADSC is asserted LOW (if the access is
initiated by ADSC, the write inputs must be deasserted during
this first cycle). The address presented to the address inputs is
latched into the address register and the burst counter and/or
control logic, and later presented to the memory core. If the OE
input is asserted LOW, the requested data is available at the data
outputs with a maximum to tCDV after clock rise. ADSP is ignored
if CE1 is HIGH.
Single Write Accesses Initiated by ADSP
This access is initiated when the following conditions are
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active,
and (2) ADSP is asserted LOW. The addresses presented are
loaded into the address register and the burst inputs (GW, BWE,
and BWX) are ignored during this first clock cycle. If the write
inputs are asserted active (see Truth Table for Read/Write on
page 12 for appropriate states that indicate a write) on the next
clock rise, the appropriate data is latched and written into the
device. Byte writes are allowed. All I/O are tristated during a byte
write. As this is a common I/O device, the asynchronous OE
input signal must be deasserted and the I/O must be tristated
prior to the presentation of data to DQs. As a safety precaution,
the data lines are tristated when a write cycle is detected,
regardless of the state of OE.
Single Write Accesses Initiated by ADSC
This write access is initiated when the following conditions are
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted
HIGH, and (4) the write input signals (GW, BWE, and BWX)
indicate a write access. ADSC is ignored if ADSP is active LOW.
The addresses presented are loaded into the address register
and the burst counter, the control logic, or both, and delivered to
the memory core The information presented to DQ[A:D] is written
into the specified address location. Byte writes are allowed. All
I/O are tristated when a write is detected, even a byte write.
Because this is a common I/O device, the asynchronous OE
input signal must be deasserted and the I/O must be tristated
prior to the presentation of data to DQs. As a safety precaution,
the data lines are tristated when a write cycle is detected,
regardless of the state of OE.
Burst Sequences
CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/CY7C138
3KVE33 provides an on-chip two-bit wraparound burst counter
inside the SRAM. The burst counter is fed by A[1:0], and can
follow either a linear or interleaved burst order. The burst order
is determined by the state of the MODE input. A LOW on MODE
selects a linear burst sequence. A HIGH on MODE selects an
interleaved burst order. Leaving MODE unconnected causes the
device to default to a interleaved burst sequence.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ places
the SRAM in a power conservation sleep mode. Two clock cycles
are required to enter into or exit from this sleep mode. While in
this mode, data integrity is guaranteed. Accesses pending when
entering the sleep mode are not considered valid nor is the
completion of the operation guaranteed. The device must be
deselected prior to entering the sleep mode. CE1, CE2, CE3,
ADSP, and ADSC must remain inactive for the duration of tZZREC
after the ZZ input returns LOW.


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34 


Datasheet Download




Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ]  

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Alldatasheet API   |   Link Exchange   |   Manufacturer List
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn