Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

NCV887102D1R2G Datasheet(PDF) 11 Page - ON Semiconductor

Part # NCV887102D1R2G
Description  Automotive Grade Non-Synchronous Boost Controller
Download  17 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ONSEMI [ON Semiconductor]
Direct Link  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

NCV887102D1R2G Datasheet(HTML) 11 Page - ON Semiconductor

Back Button NCV887102D1R2G Datasheet HTML 7Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 8Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 9Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 10Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 11Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 12Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 13Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 14Page - ON Semiconductor NCV887102D1R2G Datasheet HTML 15Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 11 / 17 page
background image
NCV8871
www.onsemi.com
11
operation should be verified empirically. The worst case VIN
is half of VOUT, or whatever VIN is closest to half of VOUT.
After choosing a peak current ripple value, calculate the
inductor value as follows:
L
+
V
IN(WC) DWC
DI
L,max fs
Where: VIN(WC): VIN value as close as possible to
half of VOUT [V]
DWC: duty cycle at VIN(WC)
DIL,max: maximum peak to peak ripple [A]
The maximum average inductor current can be calculated
as follows:
I
L,AVG +
V
OUTIOUT(max)
V
IN(min)h
The Peak Inductor current can be calculated as follows:
I
L,peak + IL,avg )
DI
L,max
2
Where: IL,peak: Peak inductor current value [A]
4. Select Output Capacitors
The output capacitors smooth the output voltage and
reduce the overshoot and undershoot associated with line
transients. The steady state output ripple associated with the
output capacitors can be calculated as follows:
V
OUT(ripple) +
DI
OUT(max)
fC
OUT
)
I
OUT(max)
1
* D )
V
IN(min)D
2fL
R
ESR
The capacitors need to survive an RMS ripple current as
follows:
I
Cout(RMS) + IOUT
D
WC
D
WC
)
D
WC
12
D
WC
L
R
OUT
T
SW
2
The use of parallel ceramic bypass capacitors is strongly
encouraged to help with the transient response.
5. Select Input Capacitors
The input capacitor reduces voltage ripple on the input to
the module associated with the ac component of the input
current.
I
Cin(RMS) +
V
IN(min)
2 D
WC
LfsVOUT23
6. Select Feedback Resistors
The feedback resistors form a resistor divider from the
output of the converter to ground, with a tap to the feedback
pin. During regulation, the divided voltage will equal Vref.
The lower feedback resistor can be chosen, and the upper
feedback resistor value is calculated as follows:
Rupper + Rlower
Vout * Vref
V
ref
The total feedback resistance (Rupper + Rlower) should be in
the range of 1 k
W – 100 kW.
7. Select Compensator Components
Current Mode control method employed by the NCV8871
allows the use of a simple, Type II compensation to optimize
the dynamic response according to system requirements.
8. Select MOSFET(s)
In order to ensure the gate drive voltage does not drop out
the MOSFET(s) chosen must not violate the following
inequality:
Q
g(total) v
I
drv
fs
Where: Qg(total): Total Gate Charge of MOSFET(s) [C]
Idrv: Drive voltage current [A]
fs: Switching Frequency [Hz]
The maximum RMS Current can be calculated as follows:
I
Q(max) + Iout
D
D
The maximum voltage across the MOSFET will be the
maximum output voltage, which is the higher of the
maximum input voltage and the regulated output voltaged:
V
Q(max) + VOUT(max)
9. Select Diode
The output diode rectifies the output current. The average
current through diode will be equal to the output current:
I
D(avg) + IOUT(max)
Additionally, the diode must block voltage equal to the
higher of the output voltage and the maximum input voltage:
V
D(max) + VOUT(max)
The maximum power dissipation in the diode can be
calculated as follows:
P
D + Vf (max) IOUT(max)
Where: Pd: Power dissipation in the diode [W]
Vf(max): Maximum forward voltage of the diode [V]
10. Determine Feedback Loop Compensation Network
The purpose of a compensation network is to stabilize the
dynamic response of the converter. By optimizing the
compensation network, stable regulation response is
achieved for input line and load transients.
Compensator design involves the placement of poles and
zeros in the closed loop transfer function. Losses from the
boost inductor, MOSFET, current sensing and boost diode
losses
also
influence
the
gain
and
compensation
expressions. The OTA has an ESD protection structure
(RESD
≈ 502 W, data not provided in the datasheet) located
on the die between the OTA output and the IC package
compensation pin (VC). The information from the OTA
PWM feedback control signal (VCTRL) may differ from the
IC-VC signal if R2 is of similar order of magnitude as RESD.


Similar Part No. - NCV887102D1R2G

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCV887102D1R2G ONSEMI-NCV887102D1R2G Datasheet
145Kb / 12P
   Automotive Grade Non-Synchronous Boost Controller
September, 2012 ??Rev. 3
NCV887102D1R2G ONSEMI-NCV887102D1R2G Datasheet
242Kb / 17P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 12
More results

Similar Description - NCV887102D1R2G

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCV8870 ONSEMI-NCV8870_16 Datasheet
239Kb / 15P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 10
NCV887200 ONSEMI-NCV887200 Datasheet
145Kb / 16P
   Automotive Grade Non-Synchronous Boost Controller
June, 2015 ??Rev. 7
NCV8871 ONSEMI-NCV8871_16 Datasheet
242Kb / 17P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 12
NCV8873 ONSEMI-NCV8873_16 Datasheet
176Kb / 11P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 6
NCV8870 ONSEMI-NCV8870_17 Datasheet
145Kb / 16P
   Automotive Grade Non-Synchronous Boost Controller
January, 2017 ??Rev. 11
NCV8871 ONSEMI-NCV8871 Datasheet
145Kb / 12P
   Automotive Grade Non-Synchronous Boost Controller
September, 2012 ??Rev. 3
NCV8870 ONSEMI-NCV8870 Datasheet
143Kb / 11P
   Automotive Grade Non-Synchronous Boost Controller
September, 2012 ??Rev. 1
NCV887200 ONSEMI-NCV887200_16 Datasheet
240Kb / 16P
   Automotive Grade Non-Synchronous Boost Controller
August, 2016 ??Rev. 9
NCV8873 ONSEMI-NCV8873_17 Datasheet
101Kb / 11P
   Automotive Grade Non-Synchronous Boost Controller
December, 2017 ??Rev. 8
NCV8873 ONSEMI-NCV8873 Datasheet
143Kb / 11P
   Automotive Grade Non-Synchronous Boost Controller
May, 2012 ??Rev. 2
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com