Electronic Components Datasheet Search
  English  ▼

Delete All
ON OFF
ALLDATASHEET.COM

X  

Preview PDF Download HTML

AD7715 Datasheet(PDF) 23 Page - Analog Devices

Part No. AD7715
Description  16-Bit, Sigma-Delta ADC
Download  41 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

AD7715 Datasheet(HTML) 23 Page - Analog Devices

Back Button AD7715_17 Datasheet HTML 19Page - Analog Devices AD7715_17 Datasheet HTML 20Page - Analog Devices AD7715_17 Datasheet HTML 21Page - Analog Devices AD7715_17 Datasheet HTML 22Page - Analog Devices AD7715_17 Datasheet HTML 23Page - Analog Devices AD7715_17 Datasheet HTML 24Page - Analog Devices AD7715_17 Datasheet HTML 25Page - Analog Devices AD7715_17 Datasheet HTML 26Page - Analog Devices AD7715_17 Datasheet HTML 27Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 23 / 41 page
background image
AD7715
Data Sheet
Rev. E | Page 22 of 40
Filter Characteristics
The AD7715’s digital filter is a low-pass filter with a (sinx/x)3
response (also called sinc3). The transfer function for this filter
is described in the z-domain by
3
1
1
1
1
)
(
×
=
z
z
N
z
H
N
and in the frequency domain by
3
1
)
(


×
π


×
π
×
×
=
S
S
f
f
Sin
f
f
N
Sin
N
f
H
where N is the ratio of the modulator rate to the output rate and
fMOD is the modulator rate.
Figure 6 shows the filter frequency response for a cutoff frequency
of 15.72 Hz which corresponds to a first filter notch frequency
of 60 Hz. The plot is shown from dc to 390 Hz. This response is
repeated at either side of the digital filter’s sample frequency
and at either side of multiples of the filter’s sample frequency.
FREQUENCY (Hz)
0
–40
–60
–80
–100
–120
–140
–160
–180
–200
–220
–20
–240
360
0
300
180
120
60
240
Figure 6. Frequency Response of AD7715 Filter
The response of the filter is similar to that of an averaging filter
but with a sharper roll-off. The output rate for the digital filter
corresponds with the positioning of the first notch of the filter’s
frequency response. Thus, for the plot of Figure 6 where the
output rate is 60 Hz, the first notch of the filter is at 60 Hz. The
notches of this (sinx/x)3 filter are repeated at multiples of the
first notch. The filter provides attenuation of better than 100 dB
at these notches.
The cutoff frequency of the digital filter is determined by the
value loaded to the FS0 to FS1 bits in the setup register. program-
ming a different cutoff frequency via FS0 and FS1 does not alter
the profile of the filter response; it changes the frequency of the
notches. The output update of the part and the frequency of the
first notch correspond.
Because the AD7715 contains this on-chip, low-pass filtering,
there is a settling time associated with step function inputs and
data on the output is invalid after a step change until the settling
time has elapsed. The settling time depends upon the output
rate chosen for the filter. The settling time of the filter to a full-
scale step input can be up 4 times the output data period. For a
synchronized step input (using the FSYNC function), the
settling time is 3 times the output data period.
Post-Filtering
The on-chip modulator provides samples at a 19.2 kHz output
rate with fCLKIN at 2.4576 MHz. The on-chip digital filter decimates
these samples to provide data at an output rate that corresponds
to the programmed output rate of the filter. Because the output
data rate is higher than the Nyquist criterion, the output rate
for a given bandwidth satisfys most application requirements.
However, there may be some applications that require a higher
data rate for a given bandwidth and noise performance.
Applications that need this higher data rate do require some
post-filtering following the digital filter of the AD7715.
For example, if the required bandwidth is 7.86 Hz but the
required update rate is 100 Hz, the data can be taken from the
AD7715 at the 100 Hz rate giving a −3 dB bandwidth of 26.2 Hz.
Post-filtering can be applied to this to reduce the bandwidth
and output noise, to the 7.86 Hz bandwidth level, while
maintaining an output rate of 100 Hz.
Post-filtering can also be used to reduce the output noise from
the device for bandwidths below 13.1 Hz. At a gain of 128 and
a bandwidth of 13.1 Hz, the output rms noise is 520 nV. This is
essentially device noise or white noise and because the input is
chopped, the noise has a primarily flat frequency response. By
reducing the bandwidth below 13.1 Hz, the noise in the resultant
pass-band can be reduced. A reduction in bandwidth by a factor
of 2 results in a reduction of approximately 1.25 in the output
rms noise. This additional filtering results in a longer settling time.


Similar Part No. - AD7715_17

ManufacturerPart No.DatasheetDescription
Analog Devices
Analog Devices
AD7715 AD-AD7715_10 Datasheet
495Kb / 40P
   3 V/5 V, 450 關A 16-Bit, Sigma-Delta ADC
REV. D
AD7715 AD-AD7715_15 Datasheet
495Kb / 40P
   16-Bit, Sigma-Delta ADC
REV. D
More results

Similar Description - AD7715_17

ManufacturerPart No.DatasheetDescription
Analog Devices
Analog Devices
AD7715 AD-AD7715_15 Datasheet
495Kb / 40P
   16-Bit, Sigma-Delta ADC
REV. D
ADUM7703 AD-ADUM7703 Datasheet
351Kb / 22P
   16-Bit, Isolated, Sigma-Delta ADC
AD7171 AD-AD7171 Datasheet
284Kb / 16P
   16-Bit Low Power Sigma-Delta ADC
REV. 0
AD7707 AD-AD7707_15 Datasheet
693Kb / 52P
   3-Channel 16-Bit, Sigma-Delta ADC
REV. B
AD7171 AD-AD7171_17 Datasheet
313Kb / 17P
   16-Bit, Low Power, Sigma-Delta ADC
AD7707 AD-AD7707_17 Datasheet
775Kb / 53P
   3-Channel 16-Bit, Sigma-Delta ADC
Core Technology (Shenzhen) Co., Ltd.
Core Technology (Shenzh...
CS1232 CHIPSEA-CS1232 Datasheet
685Kb / 23P
   24-bit Sigma-Delta ADC
CS1237 CHIPSEA-CS1237 Datasheet
604Kb / 19P
   24-bit Sigma-Delta ADC
CS1238 CHIPSEA-CS1238 Datasheet
703Kb / 20P
   24-bit Sigma-Delta ADC
CS1231 CHIPSEA-CS1231 Datasheet
674Kb / 21P
   24-bit Sigma-Delta ADC
More results


Html Pages

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41 


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz