Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

MLT04 Datasheet(PDF) 10 Page - Analog Devices

Part # MLT04
Description  Four-Channel, Four-Quadrant Analog Multiplier
Download  12 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

MLT04 Datasheet(HTML) 10 Page - Analog Devices

Back Button MLT04 Datasheet HTML 4Page - Analog Devices MLT04 Datasheet HTML 5Page - Analog Devices MLT04 Datasheet HTML 6Page - Analog Devices MLT04 Datasheet HTML 7Page - Analog Devices MLT04 Datasheet HTML 8Page - Analog Devices MLT04 Datasheet HTML 9Page - Analog Devices MLT04 Datasheet HTML 10Page - Analog Devices MLT04 Datasheet HTML 11Page - Analog Devices MLT04 Datasheet HTML 12Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 10 / 12 page
background image
–10–
REV. B
APPLICATIONS
The MLT04 is well suited for such applications as modulation/
demodulation, automatic gain control, power measurement, analog
computation, voltage-controlled amplifiers, frequency doublers,
and geometry correction in CRT displays.
Multiplier Connections
Figure 43 llustrates the basic connections for multiplication. Each
of the four independent multipliers has single-ended voltage inputs
(X, Y) and a low impedance voltage output (W). Also, each
multiplier has its own dedicated ground connection (GND) which
is connected to the circuit’s analog common. For best perfor-
mance, circuit layout should be compact with short component
leads and well-bypassed supply voltage feeds. In applications where
fewer than four multipliers are used, all unused analog inputs must
be returned to the analog common.
Figure 43. Basic Multiplier Connections
Squaring and Frequency Doubling
As shown in Figure 44, squaring of an input signal, V
IN, is achieved
by connecting the X-and Y-inputs in parallel to produce an output
of V
IN
2/2.5 V. The input may have either polarity, but the output
will be positive.
Figure 44. Connections for Squaring
When the input is a sine wave given by V
IN sin ωt, the squaring
circuit behaves as a frequency doubler because of the trigonometric
identity:
(V
IN
sin
ωt )2
2.5V
=
V
IN
2
2.5V
1
2


(1
− cos 2ωt )
The equation shows a dc term at the output which will vary
strongly with the amplitude of the input, V
IN.
The output dc offset
can be eliminated by capacitively coupling the MLT04’s output
with a high-pass filter. For optimal spectral performance, the
filter’s cutoff frequency should be chosen to eliminate the input
fundamental frequency.
A source of error in this configuration is the offset voltages of the X
and Y inputs. The input offset voltages produce cross products
with the input signal to distort the output waveform. To circum-
vent this problem, Figure 45 illustrates the use of inverting
amplifiers configured with an OP285 to provide a means by which
the X- and Y-input offsets can be trimmed.
Figure 45. Frequency Doubler with Input Offset Voltage
Trims
Feedback Divider Connections
The most commonly used analog divider circuit is the “inverted
multiplier” configuration. As illustrated in Figure 46, an “inverted
multiplier” analog divider can be configured with a multiplier
operating in the feedback loop of an operational amplifier. The
general form of the transfer function for this circuit configuration is
given by:
V
O
=−2.5V ×
R2
R1


×
V
IN
V
X
Here, the multiplier operates as a voltage-controlled potentiometer
that adjusts the loop gain of the op amp relative to a control signal,
V
X.
As the control signal to the multiplier decreases, the output of
the multiplier decreases as well. This has the effect of reducing
negative feedback which, in turn, decreases the amplifier’s loop
gain. The result is higher closed-loop gain and reduced circuit
bandwidth. As V
X is increased, the output of the multiplier
increases which generates more negative feedback — closed-loop
gain drops and circuit bandwidth increases. An example of an
“inverted multiplier” analog divider frequency response is shown in
Figure 47.
MLT04
1
2
3
4
5
6
7
8
9
18
17
16
15
14
13
12
11
10
18
17
16
15
14
13
12
11
10
4
1
2
3
5
6
7
8
9
MLT04
W4
GND4
X4
V
EE
Y4
Y3
X3
GND3
W3
W1
GND1
X1
Y1
V
CC
Y2
X2
GND2
W2
W4
X4
Y4
Y3
X3
W3
0.1µF
–5V
0.1µF
W1
X1
Y1
Y2
X2
W1–4 = 0.4 (X1–4 Y1–4)
W2
+5V
0.4
+5V
–5V
X
GND
Y
W
1/4 MLT04
V
IN
0.1µF
0.1µF
W = 0.4 V
IN
2
+
+
R
L
10k
C1
100pF
1/4 MLT04
0.4
3
2
1
W1
4
+
+
VO
2
3
1
A1
A1, A2 = 1/2 OP285
+
R2
10k
R5
500k
P1
50k
R1
10k
+5V
–5V
6
5
7
A2
+
R4
10k
R6
500k
P2
50k
R3
10k
+5V
–5V
VIN
YOS TRIM
XOS TRIM


Similar Part No. - MLT04

ManufacturerPart #DatasheetDescription
logo
PANDUIT CORP.
MLT10S-CP PANDUIT-MLT10S-CP Datasheet
260Kb / 1P
   METAL LOCKING TIE STANDARD SERIES 304 STAINLESS STEEL
MLT10S-CP316 PANDUIT-MLT10S-CP316 Datasheet
217Kb / 1P
   METAL LOCKING TIE STANDARD SERIES 316 STAINLESS STEEL
MLT10SH-LP316 PANDUIT-MLT10SH-LP316 Datasheet
231Kb / 1P
   METAL LOCKING TIE SUPER HEAVY DUTY 316 STAINLESS STEEL
MLT12S-Q PANDUIT-MLT12S-Q Datasheet
260Kb / 1P
   METAL LOCKING TIE STANDARD SERIES 304 STAINLESS STEEL
MLT12SH-Q316 PANDUIT-MLT12SH-Q316 Datasheet
231Kb / 1P
   METAL LOCKING TIE SUPER HEAVY DUTY 316 STAINLESS STEEL
More results

Similar Description - MLT04

ManufacturerPart #DatasheetDescription
logo
IC-Haus GmbH
IC-BM ICHAUS-IC-BM Datasheet
329Kb / 7P
   FOUR-CHANNEL FOUR-QUADRANT ANALOG MULTIPLIER
IC-BM ICHAUS-IC-BM_11 Datasheet
332Kb / 7P
   FOUR-CHANNEL FOUR-QUADRANT ANALOG MULTIPLIER
logo
Intersil Corporation
ICL8013 INTERSIL-ICL8013 Datasheet
132Kb / 8P
   1MHz, Four Quadrant Analog Multiplier
ICL8013 INTERSIL-ICL8013_00 Datasheet
726Kb / 8P
   1MHz, Four Quadrant Analog Multiplier
logo
Elantec Semiconductor
EL4450C ELANTEC-EL4450C Datasheet
266Kb / 14P
   Wideband Four-Quadrant Multiplier
logo
Intersil Corporation
EL4450 INTERSIL-EL4450 Datasheet
170Kb / 10P
   Wideband Four-Quadrant Multiplier
logo
ON Semiconductor
MC1495 ONSEMI-MC1495 Datasheet
332Kb / 16P
   LINEAR FOUR-QUADRANT MULTIPLIER
August, 2001 ??Rev. 1
logo
Intersil Corporation
HA-2557 INTERSIL-HA-2557 Datasheet
576Kb / 10P
   130MHz, Four Quadrant, Current Output Analog Multiplier
HA2556 INTERSIL-HA2556 Datasheet
205Kb / 20P
   Wideband Four Quadrant Analog Multiplier (Voltage Output)
July 1994
HA2557 INTERSIL-HA2557 Datasheet
430Kb / 14P
   Wideband Four Quadrant Analog Multiplier (Current Output)
July 1994
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com