Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

AD737BQ Datasheet(PDF) 7 Page - Analog Devices

Part # AD737BQ
Description  Low Cost, Low Power, True RMS-to-DC Converter
Download  8 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  AD [Analog Devices]
Direct Link  http://www.analog.com
Logo AD - Analog Devices

AD737BQ Datasheet(HTML) 7 Page - Analog Devices

  AD737BQ Datasheet HTML 1Page - Analog Devices AD737BQ Datasheet HTML 2Page - Analog Devices AD737BQ Datasheet HTML 3Page - Analog Devices AD737BQ Datasheet HTML 4Page - Analog Devices AD737BQ Datasheet HTML 5Page - Analog Devices AD737BQ Datasheet HTML 6Page - Analog Devices AD737BQ Datasheet HTML 7Page - Analog Devices AD737BQ Datasheet HTML 8Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 7 / 8 page
background image
AD737
REV. C
–7–
AC MEASUREMENT ACCURACY AND CREST FACTOR
The crest factor of the input waveform is often overlooked when
determining the accuracy of an ac measurement. Crest factor is
defined as the ratio of the peak signal amplitude to the rms am-
plitude (C.F. = VPEAK/V rms). Many common waveforms, such
as sine and triangle waves, have relatively low crest factors (
≥2).
Other waveforms, such as low duty cycle pulse trains and SCR
waveforms, have high crest factors. These types of waveforms
require a long averaging time constant (to average out the long
time periods between pulses). Figure 6 shows the additional er-
ror vs. crest factor of the AD737 for various values of CAV.
SELECTING PRACTICAL VALUES FOR INPUT
COUPLING (CC), AVERAGING (CAV) AND FILTERING
(CF) CAPACITORS
Table II provides practical values of CAV and CF for several
common applications.
Table II. AD737 Capacitor Selection Chart
Application
rms
Low
Max
CAV
CF
Settling
Input
Frequency Crest
Time*
Level
Cutoff
Factor
to 1%
(–3 dB)
General Purpose
0–1 V
20 Hz
5
150
µF 10 µF 360 ms
rms Computation
200 Hz
5
15
µF1 µF 36 ms
0–200 mV 20 Hz
5
33
µF 10 µF 360 ms
200 Hz
5
3.3
µF1 µF 36 ms
General Purpose
0–1 V
20 Hz
None
33
µF 1.2 sec
Average
200 Hz
None
3.3
µF 120 ms
Responding
0–200 mV 20 Hz
None
33
µF 1.2 sec
200 Hz
None
3.3
µF 120 ms
SCR Waveform
0–200 mV 50 Hz
5
100
µF 33 µF 1.2 sec
Measurement
60 Hz
5
82
µF 27 µF 1.0 sec
0–100 mV 50 Hz
5
50
µF 33 µF 1.2 sec
60 Hz
5
47
µF 27 µF 1.0 sec
Audio
Applications
Speech
0–200 mV 300 Hz
3
1.5
µF 0.5 µF 18 ms
Music
0–100 mV 20 Hz
10
100
µF 68 µF 2.4 sec
* Settling time is specified over the stated rms input level with the input signal increasing
from zero. Settling times will be greater for decreasing amplitude input signals.
The input coupling capacitor, CC, in conjunction with the 8 k
internal input scaling resistor, determine the –3 dB low fre-
quency rolloff. This frequency, FL, is equal to:
F
L =
1
2
π(8,000)(TheValue of C
C in Farads )
Note that at FL, the amplitude error will be approximately –30%
(–3 dB) of reading. To reduce this error to 0.5% of reading,
choose a value of CC that sets FL at one tenth the lowest fre-
quency to be measured.
In addition, if the input voltage has more than 100 mV of dc
offset, than the ac coupling network at Pin 2 should be used in
addition to capacitor CC.
RAPID SETTLING TIMES VIA THE AVERAGE
RESPONDING CONNECTION (FIGURE 17)
Because the average responding connection does not use an av-
eraging capacitor, its settling time does not vary with input sig-
nal level; it is determined solely by the RC time constant of CF
and the internal 8 k
Ω output scaling resistor.
Figure 17. AD737 Average Responding Circuit
DC ERROR, OUTPUT RIPPLE, AND AVERAGING
ERROR
Figure 18 shows the typical output waveform of the AD737 with
a sine-wave input voltage applied. As with all real-world devices,
the ideal output of VOUT = VIN is never exactly achieved; in-
stead, the output contains both a dc and an ac error component.
Figure 18. Output Waveform for Sine-Wave Input Voltage
As shown, the dc error is the difference between the average of
the output signal (when all the ripple in the output has been
removed by external filtering) and the ideal dc output. The dc
error component is therefore set solely by the value of averag-
ing capacitor used–no amount of post filtering (i.e., using a
very large CF) will allow the output voltage to equal its ideal
value. The ac error component, an output ripple, may be easily
removed by using a large enough post filtering capacitor, CF.
In most cases, the combined magnitudes of both the dc and ac error
components need to be considered when selecting appropriate values
for capacitors CAV and CF. This combined error, representing the
maximum uncertainty of the measurement is termed the “averaging
error” and is equal to the peak value of the output ripple plus the dc
error. As the input frequency increases, both error components de-
crease rapidly: if the input frequency doubles, the dc error and ripple
reduce to 1/4 and 1/2 their original values, respectively, and rapidly
become insignificant.


Similar Part No. - AD737BQ

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD737-EVALZ AD-AD737-EVALZ Datasheet
499Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD7376 AD-AD7376 Datasheet
664Kb / 16P
   2-Channel, 256-Position Digital Potentiometer
REV. 0
AD7376 AD-AD7376 Datasheet
268Kb / 20P
   8-Bit Dual Nonvolatile Memory Digital Potentiometer
REV. 0
AD7376 AD-AD7376 Datasheet
335Kb / 12P
   -15 V Operation Digital Potentiometer
REV. 0
AD7376 AD-AD7376 Datasheet
749Kb / 16P
   256-Position and 33-Position Digital Potentiometers
REV. B
More results

Similar Description - AD737BQ

ManufacturerPart #DatasheetDescription
logo
Analog Devices
AD8436 AD-AD8436_13 Datasheet
747Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
REV. B
AD736 AD-AD736_15 Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD737 AD-AD737_15 Datasheet
499Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD8436 AD-AD8436_17 Datasheet
762Kb / 21P
   Low Cost, Low Power, True RMS-to-DC Converter
AD736 AD-AD736 Datasheet
218Kb / 8P
   Low Cost, Low Power, True RMS-to-DC Converter
REV. C
AD737 AD-AD737_12 Datasheet
499Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD736 AD-AD736_12 Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
logo
Burr-Brown (TI)
4341 BURR-BROWN-4341 Datasheet
331Kb / 4P
   LOW COST TRUE RMS-TO-DC CONVERTER
logo
Analog Devices
AD636 AD-AD636 Datasheet
157Kb / 8P
   Low Level, True RMS-to-DC Converter
REV. B
AD636 AD-AD636_15 Datasheet
677Kb / 17P
   Low Level, True RMS-to-DC Converter
Rev. E
More results


Html Pages

1 2 3 4 5 6 7 8


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com