Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

NCV3843BVDR2 Datasheet(PDF) 10 Page - ON Semiconductor

Part # NCV3843BVDR2
Description  High Performance Current Mode Controllers
Download  17 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ONSEMI [ON Semiconductor]
Direct Link  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

NCV3843BVDR2 Datasheet(HTML) 10 Page - ON Semiconductor

Back Button NCV3843BVDR2 Datasheet HTML 6Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 7Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 8Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 9Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 10Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 11Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 12Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 13Page - ON Semiconductor NCV3843BVDR2 Datasheet HTML 14Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 17 page
background image
NCV3843BV
http://onsemi.com
10
Undervoltage Lockout
Two undervoltage lockout comparators have been
incorporated to guarantee that the IC is fully functional
before the output stage is enabled. The positive power
supply terminal (VCC) and the reference output (Vref) are
each monitored by separate comparators. Each has built−in
hysteresis to prevent erratic output behavior as their
respective thresholds are crossed. The VCC comparator
upper and lower thresholds are 8.4 V/7.6 V for the
NCV3843BV. The Vref comparator upper and lower
thresholds are 3.6 V/3.4 V. The NCV3843BV is intended for
lower voltage DC−to−DC converter applications. A 36 V
Zener is connected as a shunt regulator from VCC to ground.
Its purpose is to protect the IC from excessive voltage that
can occur during system startup. The minimum operating
voltage (VCC) for the NCV3843BV is 8.2 V.
These devices contain a single totem pole output stage that
was specifically designed for direct drive of power
MOSFETs. It is capable of up to
±1.0 A peak drive current
and has a typical rise and fall time of 50 ns with a 1.0 nF load.
Additional internal circuitry has been added to keep the
Output in a sinking mode whenever an undervoltage lockout
is active. This characteristic eliminates the need for an
external pull−down resistor.
The SOIC−14 surface mount package provides separate
pins for VC (output supply) and Power Ground. Proper
implementation will significantly reduce the level of
switching transient noise imposed on the control circuitry.
This becomes particularly useful when reducing the Ipk(max)
clamp level. The separate VC supply input allows the
designer added flexibility in tailoring the drive voltage
independent of VCC. A Zener clamp is typically connected
to this input when driving power MOSFETs in systems
where VCC is greater than 20 V. Figure 26 shows proper
power and control ground connections in a current−sensing
power MOSFET application.
Reference
The 5.0 V bandgap reference is trimmed to
±2.0% on the
NCV3843BV. Its primary purpose is to supply charging
current to the oscillator timing capacitor. The reference has
short− circuit protection and is capable of providing in
excess of 20 mA for powering additional control system
circuitry.
Design Considerations
Do not attempt to construct the converter on
wire−wrap or plug−in prototype boards. High frequency
circuit layout techniques are imperative to prevent
pulse−width jitter. This is usually caused by excessive noise
pick−up imposed on the Current Sense or Voltage Feedback
inputs. Noise immunity can be improved by lowering circuit
impedances at these points. The printed circuit layout should
contain a ground plane with low−current signal and
high−current switch and output grounds returning on
separate paths back to the input filter capacitor. Ceramic
bypass capacitors (0.1
mF) connected directly to VCC, VC,
and Vref may be required depending upon circuit layout.
This provides a low impedance path for filtering the high
frequency noise. All high current loops should be kept as
short as possible using heavy copper runs to minimize
radiated EMI. The Error Amp compensation circuitry and
the converter output voltage divider should be located close
to the IC and as far as possible from the power switch and
other noise−generating components.
Current mode converters can exhibit subharmonic
oscillations when operating at a duty cycle greater than 50%
with continuous inductor current. This instability is
independent of the regulator’s closed loop characteristics
and is caused by the simultaneous operating conditions of
fixed frequency and peak current detecting. Figure 20A
shows the phenomenon graphically. At t0, switch
conduction begins, causing the inductor current to rise at a
slope of m1. This slope is a function of the input voltage
divided by the inductance. At t1, the Current Sense Input
reaches the threshold established by the control voltage.
This causes the switch to turn off and the current to decay at
a slope of m2, until the next oscillator cycle. The unstable
condition can be shown if a perturbation is added to the
control voltage, resulting in a small
DI (dashed line). With
a fixed oscillator period, the current decay time is reduced,
and the minimum current at switch turn−on (t2) is increased
by
DI + DI m2/m1. The minimum current at the next cycle
(t3) decreases to (DI +DI m2/m1) (m2/m1). This perturbation
is multiplied by m2/m1 on each succeeding cycle, alternately
increasing and decreasing the inductor current at switch
turn−on. Several oscillator cycles may be required before
the inductor current reaches zero causing the process to
commence again. If m2/m1 is greater than 1, the converter
will be unstable. Figure 20B shows that by adding an
artificial ramp that is synchronized with the PWM clock to
the control voltage, the
DI perturbation will decrease to zero
on succeeding cycles. This compensating ramp (m3) must
have a slope equal to or slightly greater than m2/2 for
stability. With m2/2 slope compensation, the average
inductor current follows the control voltage, yielding true
current mode operation. The compensating ramp can be
derived from the oscillator and added to either the Voltage
Feedback or Current Sense inputs (Figure 33).


Similar Part No. - NCV3843BVDR2

ManufacturerPart #DatasheetDescription
logo
ON Semiconductor
NCV3843BVDR2 ONSEMI-NCV3843BVDR2 Datasheet
295Kb / 20P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
July, 2011 ??Rev. 15
NCV3843BVDR2 ONSEMI-NCV3843BVDR2 Datasheet
370Kb / 21P
   High Performance Current Mode Controllers
February, 2007 ??Rev. 9
NCV3843BVDR2 ONSEMI-NCV3843BVDR2 Datasheet
372Kb / 17P
   High Performance Current Mode Controllers
August, 2010 ??Rev. 1
NCV3843BVDR2G ONSEMI-NCV3843BVDR2G Datasheet
370Kb / 21P
   High Performance Current Mode Controllers
February, 2007 ??Rev. 9
NCV3843BVDR2G ONSEMI-NCV3843BVDR2G Datasheet
372Kb / 17P
   High Performance Current Mode Controllers
August, 2010 ??Rev. 1
More results

Similar Description - NCV3843BVDR2

ManufacturerPart #DatasheetDescription
logo
Motorola, Inc
UC3842B MOTOROLA-UC3842B Datasheet
401Kb / 16P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
Freescale Semiconductor...
MC34129EF FREESCALE-MC34129EF Datasheet
444Kb / 16P
   high performance current mode controllers
logo
ON Semiconductor
UC3844BNG ONSEMI-UC3844BNG Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
UC3845BDR2G ONSEMI-UC3845BDR2G Datasheet
387Kb / 19P
   High Performance Current Mode Controllers
December, 2012 ??Rev. 11
UC3845BVDG ONSEMI-UC3845BVDG Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
UC3845BVDR2G ONSEMI-UC3845BVDR2G Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
UC3844BVDG ONSEMI-UC3844BVDG Datasheet
399Kb / 19P
   High Performance Current Mode Controllers
August, 2013 ??Rev. 11
logo
Unisonic Technologies
UC3842B UTC-UC3842B_08 Datasheet
518Kb / 11P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
Motorola, Inc
UC3844 MOTOROLA-UC3844 Datasheet
376Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
logo
ON Semiconductor
UC3842A ONSEMI-UC3842A Datasheet
399Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
1996 REV 1
UC3844 ONSEMI-UC3844 Datasheet
376Kb / 14P
   HIGH PERFORMANCE CURRENT MODE CONTROLLERS
1996 REV 1
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com