Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

BD52014GUL-TR Datasheet(PDF) 10 Page - Rohm

Part # BD52014GUL-TR
Description  Omnipolar Detection Hall ICs (Polarity detection for both S and N features dual outputs)
Download  12 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ROHM [Rohm]
Direct Link  http://www.rohm.com
Logo ROHM - Rohm

BD52014GUL-TR Datasheet(HTML) 10 Page - Rohm

Back Button BD52014GUL-TR Datasheet HTML 4Page - Rohm BD52014GUL-TR Datasheet HTML 5Page - Rohm BD52014GUL-TR Datasheet HTML 6Page - Rohm BD52014GUL-TR Datasheet HTML 7Page - Rohm BD52014GUL-TR Datasheet HTML 8Page - Rohm BD52014GUL-TR Datasheet HTML 9Page - Rohm BD52014GUL-TR Datasheet HTML 10Page - Rohm BD52014GUL-TR Datasheet HTML 11Page - Rohm BD52014GUL-TR Datasheet HTML 12Page - Rohm  
Zoom Inzoom in Zoom Outzoom out
 10 / 12 page
background image
BU52004GUL, BU52014HFV
Technical Note
10/11
www.rohm.com
2010.01 - Rev.D
© 2010 ROHM Co., Ltd. All rights reserved.
Operation Notes
1) Absolute maximum ratings
Exceeding the absolute maximum ratings for supply voltage, operating conditions, etc. may result in damage to or
destruction of the IC. Because the source (short mode or open mode) cannot be identified if the device is damaged in this
way, it is important to take physical safety measures such as fusing when implementing any special mode that operates in
excess of absolute rating limits.
2) GND voltage
Make sure that the GND terminal potential is maintained at the minimum in any operating state, and is always kept lower
than the potential of all other pins.
3) Thermal design
Use a thermal design that allows for sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
4) Pin shorts and mounting errors
Use caution when positioning the IC for mounting on printed circuit boards. Mounting errors, such as improper positioning or
orientation, may damage or destroy the device. The IC may also be damaged or destroyed if output pins are shorted
together, or if shorts occur between the output pin and supply pin or GND.
5) Positioning components in proximity to the Hall IC and magnet
Positioning magnetic components in close proximity to the Hall IC or magnet may alter the magnetic field, and therefore the
magnetic detection operation. Thus, placing magnetic components near the Hall IC and magnet should be avoided in the
design if possible. However, where there is no alternative to employing such a design, be sure to thoroughly test and
evaluate performance with the magnetic component(s) in place to verify normal operation before implementing the design.
6) Slide-by position sensing
Fig.29 depicts the slide-by configuration employed for position sensing. Note that when the gap (d) between the magnet and
the Hall IC is narrowed, the reverse magnetic field generated by the magnet can cause the IC to malfunction. As seen in
Fig.30, the magnetic field runs in opposite directions at Point A and Point B. Since the dual output Omnipolar detection Hall
IC can detect the S-pole at Point A and the N-pole at Point B, it can wind up switching output ON as the magnet slides by in
the process of position detection. Fig. 31 plots magnetic flux density during the magnet slide-by. Although a reverse
magnetic field was generated in the process, the magnetic flux density decreased compared with the center of the magnet.
This demonstrates that slightly widening the gap (d) between the magnet and Hall IC reduces the reverse magnetic field
and prevents malfunctions.
7) Operation in strong electromagnetic fields
Exercise extreme caution about using the device in the presence of a strong electromagnetic field, as such use may cause
the IC to malfunction.
8) Common impedance
Make sure that the power supply and GND wiring limits common impedance to the extent possible by, for example,
employing short, thick supply and ground lines. Also, take measures to minimize ripple such as using an inductor or
capacitor.
9) GND wiring pattern
When both a small-signal GND and high-current GND are provided, single-point grounding at the reference point of the set
PCB is recommended, in order to separate the small-signal and high-current patterns, and to ensure that voltage changes
due to the wiring resistance and high current do not cause any voltage fluctuation in the small-signal GND. In the same way,
care must also be taken to avoid wiring pattern fluctuations in the GND wiring pattern of external components.
10) Exposure to strong light
Exposure to halogen lamps, UV and other strong light sources may cause the IC to malfunction. If the IC is subject to such
exposure, provide a shield or take other measures to protect it from the light. In testing, exposure to white LED and
fluorescent light sources was shown to have no significant effect on the IC.
11) Power source design
Since the IC performs intermittent operation, it has peak current when it’s ON. Please taking that into account and under
examine adequate evaluations when designing the power source.
L
Fig.29
d
Magnet
Hall IC
Slide
-10
-8
-6
-4
-2
0
2
4
6
8
10
0
123
456
789
10
Horizontal distance from the magnet [mm]
Reverse
Fig.31
Fig.30
B
S
A
N
Flux
Flux


Similar Part No. - BD52014GUL-TR

ManufacturerPart #DatasheetDescription
logo
Rohm
BD52011G-E2 ROHM-BD52011G-E2 Datasheet
476Kb / 20P
   Omnipolar Detection Hall ICs
BD52011G-TR ROHM-BD52011G-TR Datasheet
476Kb / 20P
   Omnipolar Detection Hall ICs
BD52011GUL-E2 ROHM-BD52011GUL-E2 Datasheet
476Kb / 20P
   Omnipolar Detection Hall ICs
BD52011GUL-TR ROHM-BD52011GUL-TR Datasheet
476Kb / 20P
   Omnipolar Detection Hall ICs
BD52011HFV-E2 ROHM-BD52011HFV-E2 Datasheet
476Kb / 20P
   Omnipolar Detection Hall ICs
More results

Similar Description - BD52014GUL-TR

ManufacturerPart #DatasheetDescription
logo
Rohm
BU52737GWZ ROHM-BU52737GWZ Datasheet
904Kb / 17P
   Omnipolar Detection Hall IC (Dual Outputs for both S and N Pole Polarity Detection)
05.Aug.2021 Rev.001
BU52011HFV-TR ROHM-BU52011HFV-TR Datasheet
608Kb / 32P
   Omnipolar Detection Hall ICs
BU52001GUL ROHM-BU52001GUL_10 Datasheet
476Kb / 20P
   Omnipolar Detection Hall ICs
BU52001GUL_1012 ROHM-BU52001GUL_1012 Datasheet
614Kb / 32P
   Omnipolar Detection Hall ICs
BU52025G-TR ROHM-BU52025G-TR Datasheet
906Kb / 34P
   Omnipolar Detection Hall ICs
BU52075GWZ ROHM-BU52075GWZ Datasheet
1Mb / 20P
   Omnipolar Detection Hall IC
BU52273NUZ ROHM-BU52273NUZ Datasheet
1Mb / 20P
   Omnipolar Detection Hall IC
BU52493NUZ ROHM-BU52493NUZ Datasheet
1Mb / 19P
   Omnipolar Detection Hall IC
BU52472NUZ ROHM-BU52472NUZ Datasheet
1Mb / 20P
   Omnipolar Detection Hall IC
BU52077GWZ ROHM-BU52077GWZ Datasheet
1Mb / 20P
   Omnipolar Detection Hall IC
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com