Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

CY14B104MA-ZSP45XI Datasheet(PDF) 8 Page - Cypress Semiconductor

Part # CY14B104MA-ZSP45XI
Description  4 Mbit (512K x 8/256K x 16) nvSRAM with Real-Time-Clock
Download  31 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY14B104MA-ZSP45XI Datasheet(HTML) 8 Page - Cypress Semiconductor

Back Button CY14B104MA-ZSP45XI Datasheet HTML 4Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 5Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 6Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 7Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 8Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 9Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 10Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 11Page - Cypress Semiconductor CY14B104MA-ZSP45XI Datasheet HTML 12Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 31 page
background image
PRELIMINARY
CY14B104KA, CY14B104MA
Document #: 001-07103 Rev. *J
Page 8 of 31
is shown in Figure 3 on page 8. Note that setting the watchdog
timeout value to ‘0’ is otherwise meaningless and as a result,
disables the watchdog function.
The output of the watchdog timer is a flag bit WDF that is set if
the watchdog is allowed to timeout. The flag is set on a watchdog
timeout and cleared when the flags or control register is read by
the user. The user can also enable an optional interrupt source
to drive the INT pin if the watchdog timeout occurs.
Figure 3. Wachdog Timer Block Diagram
.
Power Monitor
The CY14B104KA provides a power management scheme with
power fail interrupt capability. It also controls the internal switch
to backup power for the clock and protects the memory from low
VCC access. The power monitor is based on an internal bandgap
reference circuit that compares the VCC voltage to various
thresholds.
As described in the section AutoStore Operation on page 3,
when VSWITCH is reached as VCC decays from power loss, a data
store operation is initiated from SRAM to the nonvolatile
elements, securing the last SRAM data state. Power is also
switched from VCC to the backup supply (battery or capacitor) to
operate the RTC oscillator.
When operating from the backup source, no data is read or
written and the clock functions are not available to the user. The
clock continues to operate in the background. The updated clock
data is available to the user after tHRECALL delay (see
AutoStore/Power Up RECALL on page 20) after VCC is restored
to the device.
Interrupts
The CY14B104KA provides three potential interrupt sources.
They include the watchdog timer, the power monitor, and the
clock or calendar alarm. Each are individually enabled and
assigned to drive the INT pin. In addition, each has an associated
flag bit that the host processor uses to determine the cause of
the interrupt. Some sources have additional control bits that
determine functional behavior. In addition, the pin driver has
three bits that specify its behavior when an interrupt occurs.
The three interrupts each have a source and an enable. Both the
source and the enable must be active (true HIGH) to generate
an interrupt output. Only one source is necessary to drive the pin.
The user can identify the source by reading the flags or control
register, which contains the flags associated with each source.
All flags are cleared to ‘0’ when the register is read. The cycle
must be a complete read cycle (WE HIGH); otherwise, the flags
are not cleared. The power monitor has two programmable
settings explained in the section Power Monitor.
After an interrupt source is active, the pin driver determines the
behavior of the output. It has two programmable settings. Pin
driver control bits are located in the interrupt register.
According to the programming selections, the pin is driven in the
backup mode for an alarm interrupt. In addition, the pin is an
active LOW (open drain) or an active HIGH (push pull) driver. If
programmed for operation during backup mode, it is active LOW.
Lastly, the pin can provide a one shot function so that the active
condition is a pulse or a level condition. In one-shot mode, the
pulse width is internally fixed at approximately 200 ms. This
mode is intended to reset a host microcontroller. In the level
mode, the pin goes to its active polarity until the flags or control
register is read by the user. This mode is used as an interrupt to
a host microcontroller. The control bits are summarized as
follows.
Watchdog Interrupt Enable - WIE. When set to ‘1’, the
watchdog timer drives the INT pin and an internal flag when a
watchdog timeout occurs. When WIE is set to ‘0’, the watchdog
timer affects only the internal flag.
Alarm Interrupt Enable - AIE. When set to ‘1’, the alarm match
drives the INT pin and an internal flag. When set to ‘0’, the alarm
match only affects the internal flag.
Power Fail Interrupt Enable - PFE. When set to ‘1’, the power
fail monitor drives the pin and an internal flag. When set to ‘0’,
the power fail monitor affects only the internal flag.
High/Low - H/L. When set to a ‘1’, the INT pin is active HIGH
and the driver mode is push pull. The INT pin can drive HIGH
only when VCC > VSWITCH. When set to ‘0’, the INT pin is active
LOW and the drive mode is open drain. Active LOW (open drain)
is operational even in battery backup mode.
Pulse/Level - P/L. When set to ‘1’ and an interrupt occurs, the
INT pin is driven for approximately 200 ms. When P/L is set to
‘0’, the INT pin is driven HIGH or LOW (determined by H/L) until
the flags or control register is read.
When an enabled interrupt source activates the INT pin, an
external host can read the flags or control register to determine
the cause. All flags are cleared when the register is read. If the
INT pin is programmed for level mode, then the condition clears
and the INT pin returns to its inactive state. If the pin is
programmed for pulse mode, then reading the flag also clears
the flag and the pin. The pulse does not complete its specified
duration if the flags or control register is read. If the INT pin is
used as a host reset, then the flags or control register must not
be read during a reset. During a power on reset with no battery,
the interrupt register is automatically loaded with the value 24h.
This enables the power fail interrupt with an active LOW pulse.
Flags Register
The Flag regizster has three flag bits: WDF, AF, and PF, which
can generate an interrupt. These flags are set by the watchdog
timeout, alarm match, or power fail monitor respectively.The
processor can either poll this register or enable interrupts to be
informed when a flag is set. These flags are automatically reset
once the register is read. The flags register is automatically
loaded with the value 00h on power up except for the OSCF bit.
(See “Stopping and Starting the Oscillator” on page 6.)
[+] Feedback


Similar Part No. - CY14B104MA-ZSP45XI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY14B104M CYPRESS-CY14B104M Datasheet
905Kb / 33P
   4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock
CY14B104M CYPRESS-CY14B104M Datasheet
1Mb / 33P
   4-Mbit (512 K 횞 8/256 K 횞 16) nvSRAM with Real Time Clock
CY14B104M CYPRESS-CY14B104M Datasheet
1Mb / 35P
   4-Mbit (512 K x 8/256 K x 16) nvSRAM with Real Time Clock 25 ns and 45 ns access times
CY14B104M-ZSP20XC CYPRESS-CY14B104M-ZSP20XC Datasheet
905Kb / 33P
   4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock
CY14B104M-ZSP20XCT CYPRESS-CY14B104M-ZSP20XCT Datasheet
905Kb / 33P
   4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock
More results

Similar Description - CY14B104MA-ZSP45XI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY14B104K CYPRESS-CY14B104K Datasheet
905Kb / 33P
   4 Mbit (512K x 8/256K x 16) nvSRAM with Real Time Clock
CY14E104K CYPRESS-CY14E104K Datasheet
732Kb / 28P
   4 Mbit (512K x 8 / 256K x 16) nvSRAM with Real-Time-Clock
CY14B108K CYPRESS-CY14B108K Datasheet
1Mb / 29P
   8 Mbit (1024K x 8/512K x 16) nvSRAM with Real Time Clock
CY14B104L CYPRESS-CY14B104L_08 Datasheet
664Kb / 22P
   4-Mbit (512K x 8/256K x 16) nvSRAM
CY14B104L CYPRESS-CY14B104L_09 Datasheet
797Kb / 25P
   4 Mbit (512K x 8/256K x 16) nvSRAM
CY14E104L CYPRESS-CY14E104L Datasheet
649Kb / 22P
   4 Mbit (512K x 8/256K x 16) nvSRAM
CY14B104L CYPRESS-CY14B104L Datasheet
415Kb / 21P
   4-Mbit (512K x 8/256K x 16) nvSRAM
CY14B104LA CYPRESS-CY14B104LA Datasheet
863Kb / 23P
   4 Mbit (512K x 8/256K x 16) nvSRAM
CY14B101KA CYPRESS-CY14B101KA_11 Datasheet
1Mb / 34P
   1 Mbit (128K x 8/64K x 16) nvSRAM with Real Time Clock
CY14B101KA CYPRESS-CY14B101KA Datasheet
972Kb / 29P
   1 Mbit (128K x 8/64K x 16) nvSRAM with Real Time Clock
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com