Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

CY7C1370B-150AI Datasheet(PDF) 10 Page - Cypress Semiconductor

Part # CY7C1370B-150AI
Description  512K36/1M 횞 18 Pipelined SRAM with NoBL Architecture
Download  27 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY7C1370B-150AI Datasheet(HTML) 10 Page - Cypress Semiconductor

Back Button CY7C1370B-150AI Datasheet HTML 6Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 7Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 8Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 9Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 10Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 11Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 12Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 13Page - Cypress Semiconductor CY7C1370B-150AI Datasheet HTML 14Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 27 page
background image
CY7C1370B
CY7C1372B
Document #: 38-05197 Rev. **
Page 10 of 27
IEEE 1149.1 Serial Boundary Scan (JTAG)
The CY7C1370B/CY7C1372B incorporates a serial boundary
scan Test Access Port (TAP) in the BGA package only. The
TQFP package does not offer this functionality. This port
operates in accordance with IEEE Standard 1149.1–1900, but
does not have the set of functions required for full 1149.1
compliance. These functions from the IEEE specification are
excluded because their inclusion places an added delay in the
critical speed path of the SRAM. Note that the TAP controller
functions in a manner that does not conflict with the operation
of other devices using fully 1149.1-compliant TAPs. The TAP
operates using JEDEC standard 3.3V I/O logic levels.
Disabling the JTAG Feature
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(VSS) to prevent clocking of the device. TDI and TMS are inter-
nally pulled up and may be unconnected. They may alternately
be connected to VDD through a pull-up resistor. TDO should
be left unconnected. Upon power-up, the device will come up
in a reset state which will not interfere with the operation of the
device.
Test Access Port – Test Clock
The test clock is used only with the TAP controller. All inputs
are captured on the rising edge of TCK. All outputs are driven
from the falling edge of TCK.
Test Mode Select
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to
leave this pin unconnected if the TAP is not used. The pin is
pulled up internally, resulting in a logic HIGH level.
Test Data-In (TDI)
The TDI pin is used to serially input information into the
registers and can be connected to the input of any of the
registers. The register between TDI and TDO is chosen by the
instruction that is loaded into the TAP instruction register. For
information on loading the instruction register, see the TAP
Controller State Diagram. TDI is internally pulled up and can
be unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register.
Test Data-Out (TDO)
The TDO output pin is used to serially clock data-out from the
registers. The output is active depending upon the current
state of the TAP state machine (see TAP Controller State
Diagram). The output changes on the falling edge of TCK.
TDO is connected to the least significant bit (LSB) of any
register.
Performing a TAP Reset
A Reset is performed by forcing TMS HIGH (VDD) for five rising
edges of TCK. This RESET does not affect the operation of
the SRAM and may be performed while the SRAM is
operating. At power-up, the TAP is reset internally to ensure
that TDO comes up in a High-Z state.
TAP Registers
Registers are connected between the TDI and TDO pins and
allow data to be scanned into and out of the SRAM test
circuitry. Only one register can be selected at a time through
the instruction registers. Data is serially loaded into the TDI pin
on the rising edge of TCK. Data is output on the TDO pin on
the falling edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the
TDI and TDO pins as shown in the TAP Controller Block
Diagram. Upon power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.
When the TAP controller is in the CaptureIR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board level serial test path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain states. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This allows data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW
(VSS) when the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all the I/O pins on
the SRAM. Several no connect (NC) pins are also included in
the scan register to reserve pins for higher density devices.
The ×36 configuration has a 70-bit-long register, and the ×18
configuration has a 51-bit-long register.
The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR
state and is then placed between the TDI and TDO pins when
the controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD and SAMPLE Z instructions can be used
to capture the contents of the I/O ring.
The Boundary Scan Order tables show the order in which the
bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected
to TDI, and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired
into the SRAM and can be shifted out when the TAP controller
is in the Shift-DR state. The ID register has a vendor code and
other information described in the Identification Register
Definitions table.
TAP Instruction Set
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the
Instruction Code table. Three of these instructions are listed
as RESERVED and should not be used. The other five instruc-
tions are described in detail below.
The TAP controller used in this SRAM is not fully compliant
with the 1149.1 convention because some of the mandatory
1149.1 instructions are not fully implemented. The TAP
controller cannot be used to load address, data, or control
signals into the SRAM and cannot preload the I/O buffers. The


Similar Part No. - CY7C1370B-150AI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1370BV25 CYPRESS-CY7C1370BV25 Datasheet
726Kb / 26P
   512K x 36/1M x 18 Pipelined SRAM with NoBL Architecture
CY7C1370BV25-133AC CYPRESS-CY7C1370BV25-133AC Datasheet
726Kb / 26P
   512K x 36/1M x 18 Pipelined SRAM with NoBL Architecture
CY7C1370BV25-133AI CYPRESS-CY7C1370BV25-133AI Datasheet
726Kb / 26P
   512K x 36/1M x 18 Pipelined SRAM with NoBL Architecture
CY7C1370BV25-133BGC CYPRESS-CY7C1370BV25-133BGC Datasheet
726Kb / 26P
   512K x 36/1M x 18 Pipelined SRAM with NoBL Architecture
CY7C1370BV25-133BGI CYPRESS-CY7C1370BV25-133BGI Datasheet
726Kb / 26P
   512K x 36/1M x 18 Pipelined SRAM with NoBL Architecture
More results

Similar Description - CY7C1370B-150AI

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1370KV25 CYPRESS-CY7C1370KV25 Datasheet
2Mb / 30P
   18-Mbit (512K 횞 36/1M 횞 18) Pipelined SRAM with NoBL??Architecture
CY7C1370KV33 CYPRESS-CY7C1370KV33 Datasheet
999Kb / 32P
   18-Mbit (512K 횞 36/1M 횞 18) Pipelined SRAM with NoBL??Architecture (With ECC)
CY7C1460SV25 CYPRESS-CY7C1460SV25 Datasheet
429Kb / 31P
   36-Mbit (1M 횞 36/2M 횞 18) Pipelined SRAM with NoBL??Architecture
CY7C1460KV25 CYPRESS-CY7C1460KV25 Datasheet
830Kb / 32P
   36-Mbit (1M 횞 36/2M 횞 18) Pipelined SRAM with NoBL??Architecture (With ECC)
CY7C1460KV33 CYPRESS-CY7C1460KV33 Datasheet
1,010Kb / 31P
   36-Mbit (1M 횞 36/2M 횞 18) Pipelined SRAM with NoBL??Architecture (With ECC)
CY7C1380KV33 CYPRESS-CY7C1380KV33 Datasheet
3Mb / 33P
   18-Mbit (512K 횞 36/1M 횞 18) Pipelined SRAM
CY7C1371KV33 CYPRESS-CY7C1371KV33 Datasheet
682Kb / 24P
   18-Mbit (512K 횞 36/1M 횞 18) Flow-Through SRAM with NoBL??Architecture (With ECC)
CY7C1461KV33 CYPRESS-CY7C1461KV33 Datasheet
2Mb / 23P
   36-Mbit (1M 횞 36/2M 횞 18) Flow-Through SRAM with NoBL??Architecture
CY7C1370CV25 CYPRESS-CY7C1370CV25 Datasheet
712Kb / 27P
   512K x 36/1M x 18 Pipelined SRAM with NoBL??Architecture
CY7C1386KV33 CYPRESS-CY7C1386KV33 Datasheet
390Kb / 23P
   18-Mbit (512K 횞 36/1M 횞 18) Pipelined DCD Sync SRAM
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com