Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

ALD2722DB Datasheet(PDF) 10 Page - Advanced Linear Devices

Part # ALD2722DB
Description  DUAL EPAD TM OPERATIONAL AMPLIFIER
Download  10 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  ALD [Advanced Linear Devices]
Direct Link  http://www.aldinc.com
Logo ALD - Advanced Linear Devices

ALD2722DB Datasheet(HTML) 10 Page - Advanced Linear Devices

Back Button ALD2722DB Datasheet HTML 2Page - Advanced Linear Devices ALD2722DB Datasheet HTML 3Page - Advanced Linear Devices ALD2722DB Datasheet HTML 4Page - Advanced Linear Devices ALD2722DB Datasheet HTML 5Page - Advanced Linear Devices ALD2722DB Datasheet HTML 6Page - Advanced Linear Devices ALD2722DB Datasheet HTML 7Page - Advanced Linear Devices ALD2722DB Datasheet HTML 8Page - Advanced Linear Devices ALD2722DB Datasheet HTML 9Page - Advanced Linear Devices ALD2722DB Datasheet HTML 10Page - Advanced Linear Devices  
Zoom Inzoom in Zoom Outzoom out
 10 / 10 page
background image
10
Advanced Linear Devices
ALD2722E/ALD2722
DEFINITIONS AND DESIGN NOTES:
1. Initial Input Offset Voltage is the initial offset voltage of the
ALD2722E/ALD2722 operational amplifier when shipped from
the factory. The device has been pre-programmed and tested
for programmability.
2. Offset Voltage Program Range is the range of adjustment of
user specified target offset voltage. This is typically an adjust-
ment in either the negative or positive direction of the input offset
voltage from an initial input offset voltage. The input offset
programming pins, VE1A/VE1B or VE2A/VE2B change the
input offset voltages in the negative or positive direction, for
each of the amplifier A or B, respectively. User specified target
offset voltage can be any offset voltage within this programming
range.
3. Programmed Input Offset Voltage Error is the final offset
voltage error after programming when the Input Offset Voltage
is at target Offset Voltage. This parameter is sample tested.
4. Total Input Offset Voltage is the same as Programmed Input
Offset Voltage, corrected for system offset voltage error. Usu-
ally this is an all inclusive system offset voltage, which also
includes offset voltage contributions from input offset voltage,
PSRR, CMRR, TCVOS and noise. It can also include errors
introduced by external components, at a system level. Pro-
grammed Input Offset Voltage and Total Input Offset Voltage is
not necessarily zero offset voltage, but an offset voltage set to
compensate for other system errors as well. This parameter is
sample tested.
5. The Input Offset and Bias Currents are essentially input
protection diode reverse bias leakage currents. This low input
bias current assures that the analog signal from the source will
not be distorted by it. For applications where source impedance
is very high, it may be necessary to limit noise and hum pickup
through proper shielding.
6. Input Voltage Range is determined by two parallel comple-
mentary input stages that are summed internally, each stage
having a separate input offset voltage. While Total Input Offset
Voltage can be trimmed to a desired target value, it is essential
to note that this trimming occurs at only one user selected input
bias voltage. Depending on the selected input bias voltage
relative to the power supply voltages, offset voltage trimming
may affect one or both input stages. For the ALD2722E/
ALD2722, the switching point between the two stages occur at
approximately 1.5V above negative supply voltage.
7. Input Offset Voltage Drift is the average change in Total Input
Offset Voltage as a function of ambient temperature. This
parameter is sample tested.
8. Initial PSRR and initial CMRR specifications are provided as
reference information. After programming, error contribution to
the offset voltage from PSRR and CMRR is set to zero under the
specific power supply and common mode conditions, and
becomes part of the Programmed Input Offset Voltage Error.
9. Average Long Term Input Offset Voltage Stability is based on
input offset voltage shift through operating life test at 125
°C
extrapolated to TA = 25
°C, assuming activation energy of
1.0eV. This parameter is sample tested.
ADDITIONAL DESIGN NOTES:
A. The ALD2722E/ALD2722 is internally compensated for unity
gain stability using a novel scheme which produces a single pole
role off in the gain characteristics while providing more than 70
degrees of phase margin at unity gain frequency. A unity gain
buffer using the ALD2722E/ALD2722 will typically drive 400pF
of external load capacitance.
B. The ALD2722E/ALD2722 has complementary p-channel
and n-channel input differential stages connected in parallel to
accomplish rail-to-rail input common mode voltage range. The
switching point between the two differential stages is 1.5V
above negative supply voltage. For applications such as invert-
ing amplifier or non-inverting amplifier with a gain larger than 2.5
(5V operation), the common mode voltage does not make
excursions below this switching point. However, this switching
does take place if the operational amplifier is connected as a rail-
to-rail unity gain buffer and the design must allow for input offset
voltage variations.
C. The output stage consists of class AB complementary output
drivers. The oscillation resistant feature, combined with the rail-
to-rail input and output feature, makes the ALD2722E/ALD2722
an effective analog signal buffer for high source impedance
sensors, transducers, and other circuit networks.
D. The ALD2722E/ALD2722 has static discharge protection.
Care must be exercised when handling the device to avoid
strong static fields that may degrade a diode junction, causing
increased input leakage currents. The user is advised to power
up the circuit before, or simultaneously with, any input voltages
applied and to limit input voltages not to exceed 0.3V of the
power supply voltage levels.
E. VExx are high impedance terminals, as the internal bias
currents are set very low to a few microamperes to conserve
power. For some applications, these terminals may need to be
shielded from external coupling sources. For example, digital
signals running nearby may cause unwanted offset voltage
fluctuations. Care during the printed circuit board layout to place
ground traces around these pins and to isolate them from digital
lines will generally eliminate such coupling effects. In addition,
optional decoupling capacitors of 1000pF or greater value can
be added to VExx terminals.
F. The ALD2722E/ALD2722 is designed for use in low voltage,
micropower circuits. The maximum operating voltage during
normal operation should remain below 10 Volts at all times. Care
should be taken to insure that the application in which the device
is used do not experience any positive or negative transient
voltages that will cause any of the terminal voltages to exceed
this limit.
G. All inputs or unused pins except VExx pins should be
connected to a supply voltage such as Ground so that they do
not become floating pins, since input impedance at these pins
is very high. If any of these pins are left undefined, they may
cause unwanted oscillation or intermittent excessive current
drain. As these devices are built with CMOS technology, normal
operating and storage temperature limits, ESD and latchup
handling precautions pertaining to CMOS device handling
should be observed.


Similar Part No. - ALD2722DB

ManufacturerPart #DatasheetDescription
logo
Advanced Linear Devices
ALD2722DB ALD-ALD2722DB Datasheet
110Kb / 13P
   DUAL EPAD짰 LOW POWER CMOS OPERATIONAL AMPLIFIER
More results

Similar Description - ALD2722DB

ManufacturerPart #DatasheetDescription
logo
Advanced Linear Devices
ALD2721 ALD-ALD2721 Datasheet
58Kb / 10P
   DUAL EPAD TM MICROPOWER OPERATIONAL AMPLIFIER
ALD2726 ALD-ALD2726 Datasheet
58Kb / 10P
   DUAL EPAD TM ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD1722E ALD-ALD1722E Datasheet
64Kb / 10P
   EPAD??OPERATIONAL AMPLIFIER
ALD1721E ALD-ALD1721E Datasheet
66Kb / 10P
   EPAD??MICROPOWER OPERATIONAL AMPLIFIER
ALD1726E ALD-ALD1726E Datasheet
65Kb / 10P
   EPAD??ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD2724E ALD-ALD2724E Datasheet
58Kb / 10P
   DUAL EPAD PRECISION HIGH SLEW RATE CMOS OPERATIONAL AMPLIFIER
logo
Unisonic Technologies
UTCMC4558 UTC-UTCMC4558 Datasheet
110Kb / 5P
   DUAL OPERATIONAL AMPLIFIER
logo
Fairchild Semiconductor
LM2904 FAIRCHILD-LM2904 Datasheet
137Kb / 12P
   Dual Operational Amplifier
logo
Rohm
BA4558 ROHM-BA4558 Datasheet
58Kb / 5P
   Dual operational amplifier
logo
Toshiba Semiconductor
TA75458P TOSHIBA-TA75458P Datasheet
386Kb / 12P
   DUAL OPERATIONAL AMPLIFIER
More results


Html Pages

1 2 3 4 5 6 7 8 9 10


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com