Electronic Components Datasheet Search
  English  ▼
ALLDATASHEET.COM

X  

CY7C1472V33-250BZXC Datasheet(PDF) 7 Page - Cypress Semiconductor

Part # CY7C1472V33-250BZXC
Description  72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
Download  28 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Manufacturer  CYPRESS [Cypress Semiconductor]
Direct Link  http://www.cypress.com
Logo CYPRESS - Cypress Semiconductor

CY7C1472V33-250BZXC Datasheet(HTML) 7 Page - Cypress Semiconductor

Back Button CY7C1472V33-250BZXC Datasheet HTML 3Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 4Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 5Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 6Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 7Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 8Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 9Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 10Page - Cypress Semiconductor CY7C1472V33-250BZXC Datasheet HTML 11Page - Cypress Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 28 page
background image
PRELIMINARY
CY7C1470V33
CY7C1472V33
CY7C1474V33
Document #: 38-05289 Rev. *E
Page 7 of 28
Functional Overview
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 are
synchronous-pipelined Burst NoBL SRAMs designed specifi-
cally to eliminate wait states during Write/Read transitions. All
synchronous inputs pass through input registers controlled by
the rising edge of the clock. The clock signal is qualified with
the Clock Enable input signal (CEN). If CEN is HIGH, the clock
signal is not recognized and all internal states are maintained.
All synchronous operations are qualified with CEN. All data
outputs pass through output registers controlled by the rising
edge of the clock. Maximum access delay from the clock rise
(tCO) is 3.0 ns (225-MHz device).
Accesses can be initiated by asserting all three Chip Enables
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock
Enable (CEN) is active LOW and ADV/LD is asserted LOW,
the address presented to the device will be latched. The
access can either be a Read or Write operation, depending on
the status of the Write Enable (WE). BW[x] can be used to
conduct Byte Write operations.
Write operations are qualified by the Write Enable (WE). All
Writes are simplified with on-chip synchronous self-timed write
circuitry.
Three synchronous Chip Enables (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) simplify depth expansion.
All operations (Reads, Writes, and Deselects) are pipelined.
ADV/LD should be driven LOW once the device has been
deselected in order to load a new address for the next
operation.
Single Read Accesses
A read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are ALL asserted active, (3) the Write Enable input
signal WE is deasserted HIGH, and (4) ADV/LD is asserted
LOW. The address presented to the address inputs is latched
into the Address Register and presented to the memory core
and control logic. The control logic determines that a read
access is in progress and allows the requested data to
propagate to the input of the output register. At the rising edge
of the next clock the requested data is allowed to propagate
through the output register and onto the data bus within 3.0 ns
(225-MHz device) provided OE is active LOW. After the first
clock of the Read access the output buffers are controlled by
OE and the internal control logic. OE must be driven LOW in
order for the device to drive out the requested data. During the
second clock, a subsequent operation (Read/Write/Deselect)
can be initiated. Deselecting the device is also pipelined.
Therefore, when the SRAM is deselected at clock rise by one
of the chip enable signals, its output will tri-state following the
next clock rise.
Burst Read Accesses
The CY7C1470V33/CY7C1472V33/CY7C1474V33 have an
on-chip burst counter that allows the user the ability to supply
a single address and conduct up to four Reads without
reasserting the address inputs. ADV/LD must be driven LOW
in order to load a new address into the SRAM, as described in
the Single Read Access section above. The sequence of the
burst counter is determined by the MODE input signal. A LOW
input on MODE selects a linear burst mode, a HIGH selects an
interleaved burst sequence. Both burst counters use A0 and
A1 in the burst sequence, and will wrap-around when incre-
mented sufficiently. A HIGH input on ADV/LD will increment
the internal burst counter regardless of the state of chip
enables inputs or WE. WE is latched at the beginning of a burst
cycle. Therefore, the type of access (Read or Write) is
maintained throughout the burst sequence.
Single Write Accesses
Write accesses are initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are ALL asserted active, and (3) the Write signal WE
is asserted LOW. The address presented to the address inputs
is loaded into the Address Register. The write signals are
latched into the Control Logic block.
On the subsequent clock rise the data lines are automatically
tri-stated regardless of the state of the OE input signal. This
allows the external logic to present the data on DQ and DQP
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h
for
CY7C1474V33,
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and DQa,b/DQPa,b for
CY7C1472V33). In addition, the address for the subsequent
access (Read/Write/Deselect) is latched into the Address
Register (provided the appropriate control signals are
asserted).
On the next clock rise the data presented to DQ and DQP
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h
for
CY7C1474V33,
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 & DQa,b/DQPa,b for
CY7C1472V33) (or a subset for byte write operations, see
TMS
Test Mode Select
Synchronous
This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.
TCK
JTAG Clock
Clock input to the JTAG circuitry.
VDD
Power Supply
Power supply inputs to the core of the device.
VDDQ
I/O Power Supply Power supply for the I/O circuitry.
VSS
Ground
Ground for the device. Should be connected to ground of the system.
NC
No connects. This pin is not connected to the die.
E(144, 288)
These pins are not connected. They will be used for expansion to the 144M and 288M densities.
ZZ
Input-
Asynchronous
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition
with data integrity preserved. During normal operation, this pin can be connected to Vss or left
floating.
Pin Definitions (continued)
Pin Name
I/O Type
Pin Description


Similar Part No. - CY7C1472V33-250BZXC

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1472V33-250BZXC CYPRESS-CY7C1472V33-250BZXC Datasheet
520Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
More results

Similar Description - CY7C1472V33-250BZXC

ManufacturerPart #DatasheetDescription
logo
Cypress Semiconductor
CY7C1474V25 CYPRESS-CY7C1474V25 Datasheet
382Kb / 27P
   72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1470V33 CYPRESS-CY7C1470V33_06 Datasheet
520Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1470V25 CYPRESS-CY7C1470V25_06 Datasheet
517Kb / 28P
   72-Mbit(2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CY7C1470BV25 CYPRESS-CY7C1470BV25 Datasheet
868Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1470BV33 CYPRESS-CY7C1470BV33 Datasheet
902Kb / 30P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CY7C1470BV25 CYPRESS-CY7C1470BV25_09 Datasheet
890Kb / 29P
   72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL??Architecture
CY7C1471V33 CYPRESS-CY7C1471V33_07 Datasheet
1Mb / 32P
   72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL??Architecture
CY7C1471V25 CYPRESS-CY7C1471V25 Datasheet
373Kb / 30P
   72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM with NoBL Architecture
CY7C1460AV33 CYPRESS-CY7C1460AV33 Datasheet
395Kb / 27P
   36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL??Architecture
CY7C1460AV25 CYPRESS-CY7C1460AV25_06 Datasheet
511Kb / 27P
   36-Mbit (1M x 36/2M x 18/512K x 72) Pipelined SRAM with NoBL??Architecture
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


Datasheet Download

Go To PDF Page


Link URL




Privacy Policy
ALLDATASHEET.COM
Does ALLDATASHEET help your business so far?  [ DONATE ] 

About Alldatasheet   |   Advertisement   |   Datasheet Upload   |   Contact us   |   Privacy Policy   |   Link Exchange   |   Manufacturer List
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com